T.C. MİLLİ EĞİTİM BAKANLIĞI

GİDA TEKNOLOJİSİ

DUYUSAL KONTROLLERİ YAPMA
541GI0093

Ankara, 2012
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
MODÜLÜN TANIMI
Bu modül; gıdaların kalite karakteristikleri, gıdalarda renk, doku, kusur özellikleri, bu özelliklerin objektif ve sübjektif olarak ölçülmesi ile ilgili bilgi ve becerilerin kazandırıldığı öğrenme materyalidir.

SÜRE
40/24

ÖN KOŞUL
Ön koşulu yoktur.

YETERLİK
Renk, doku, kusur kontrolleri yapmak

MODÜLÜN AMACI
Genel Amaç
Bu modül ile gerekli bilgileri alıp uygun ortam sağlandığında analiz metoduna uygun olarak gıdalarda duyusal kontrolleri yapabileceksiniz.

Amaçlar
1. Renk kontrolü yapabileceksiniz.
2. Doku kontrolü yapabileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI
Ortam: Kimya laboratuvarı, teknoloji sınıfı, kütüphane, internet

Donanım: Genel laboratuvar araç gereçleri, terazi, koloroplatinat stok çözeltisi, kapiler viskozimetre, Bostwick konsistometresi, spektrofotometre, nessler tüpleri, renk karşılaştırma çözeltileri, 20 X 20 cm boyutlarında cam plaka.

ÖLÇME VE DEĞERLENDİRME
Modülün içinde yer alan, her faaliyetten sonra verilen ölçme araçları ile kazandığınız bilgileri ölçerek kendi kendinizi değerlendireceksiniz.

Öğretmen, modülün sonunda, size ölçme aracı (test, çoktan seçmeli, doğru-yanlış, vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek değerlendirecektir.
Sevgili Öğrenci,

Gıdaların yapısında, çeşitli fonksiyonları olan besin öğeleri, enzimler, pigmentler, toksik maddeler, organik asitler, tat ve koku oluşturan aroma maddeleri gibi pek çok kimyasal bileşikler bulunur. Her gıdada bu kimyasal moleküllerin çeşit, miktar ve kalitesi farklıdır.

Gıda endüstrisi, diğer endüstri dallarına göre kendine özgü bazı özellikleri olan endüstri dalıdır. Toplumun tümüne yönelik üretimde bulunulduğundan, bireylerin beslenmesini, sağlık düzeylerini ve verimliliklerini, dolayısıyla da ekonomiye katkılarını etkiler.

Gıda endüstrisinde, değişik tarımsal ürünler işlenerek değerlendirilir. İşlenen tarımsal ürünün biyolojik özellikleri, hasat, nakliye, depolama koşulları; ürünlerle uygulanan teknolojik işlemler; işlenmiş gıdanın depolama, nakliye, pazarlama ve tüketim aşamaları gıda kalitesini olumlu ya da olumsuz etkiler. Bu nedenlerle gıdaların üretim, işleme, tüketim zincirinde tüketici sağlığının korunması,aldoatılmasının önlenmesi için ham madde alımından satış aşamasına kadar her süreçte bazı kontrollerin yapılması zorunlu olmuştur.

Gıda sektöründe görev alacak olan sizler “Duyusal Kontrolleri Yapma” modülü ile gıda kalite kontrolünün önemini, gıdaların kalite karakteristiklerini, gıdalarda renk, doku, kusur gibi duyusal özelliklerini, bu özelliklerin objektif ve sübjektif olarak ölçülmesini bilerek, gıdalarda renk, doku ve kusur kontrolleri yapabileceksiniz.

Başarı dileklerimizle...
ÖĞRENME FAALİYETİ–1

AMAÇ

Bu öğrenme faaliyeti sonunda gerekli bilgileri alacak, uygun ortam, sağlandırında analiz metoduna uygun olarak gidaldarda renk kontrolü yapabileceksiniz.

ARAŞTIRMA

- Çevrenizdeki gıda işletmelerine giderek ham madde ve ürünlerinde renk kontrollerinin nasıl yapıldığını gözlemleyip araştırınız.
- Çevrenizde araştırma laboratuvarları varsa gıdalarda renk ölçümünde kullanılan objektif yöntemleri ve enstrümanlarını inceleyiniz.
- Sebze ve meyvelerde renk konusunda aranan özellikleri saptamak için çevrenizde mini bir anket düzenleyiniz.
- İnceleme, araştırma ve anket sonuçlarını rapor hâline getirip sınıfta sununuz.

1. GIDA KALİTESİ VE GIDA KALİTE KONTROLÜ

Gıda endüstrisi, diğer endüstri dallarına göre kendine özgü, farklı bazı özellikleri olan endüstri dalıdır. Bu özellikleri şöyle sıralanabilir.

- Gıda endüstrisi değişik birçok tarım ürününden yararlanarak birbirinden değişik çesit ve nitelikte gıda maddesi üretir. Bu endüstri işlediği ham maddeler ve ürettiği ürünler açısından çok geniş bir alana sahiptir.
- Toplumun tümüne yönelik üretimde bulunur.
- Toplumdaki bireylerin beslenmesini, sağlık düzeylerini, verimliliklerini, dolayısıyla da ekonomiye katkılarını etkiler.
- Gıda endüstrisi ülke tarımı ve ekonomisinin gelişmesinde en etkili faktörlerden biridir.

Gıda kontrolü üç yönünden yapılmalıdır:

- Sağlık yönünden;
 - Gıdalardaki besin öğelerinin miktarı ve kalitesinin belirlenmesi,
 - Katkı maddelerinin miktarları, etkileri ve hijyen açısından kontrolü,
 - Gıdalardaki toksik madde ve antinutrientlerin (beslenmeyi, emilimi engelleyen maddelerin) varlığının saptanması için yapılmalıdır.
Ekonomik yönünden;
- Üretilen gıdaların tüketiciye ulaşmadan dökülüp atılması önlenmesi,
- Tüketicinin aldatılarak ekonomik zarara uğratılamaması,
- Üreticinin haksız kazanç ve rekabetten uzak tutulması için yapılır.

Hukuk yönünden; Sağlığa zararlı gıda üreten ve satan kişi ve kuruluşlara uygulanacak yaptırımların, verilecek cezaların saptanması için yapılır.

1.1. Gıda Kalitesi ve Gıda Kalite Kontrolünün Tanımı

Gıda kalitesi: Bir gıdayı diğerlerinden ayıran, gıdanın tüketici tarafından tercih edilmesinde rol oynayan ve her biri ayrı ayrı ölçülüp kontrol edilebilen özelliklerin bileşimidir.

Gıda kalitesine etki eden faktörler;
- Ham madde kalitesi,
- Üretimde kullanılan yarım mamul, yardımcı madde (ingredient) ve katkı maddesi (aditif) kalitesi,
- Personel kalitesi,
- Kullanılan ambalaj maddeleri,
- Üretimde kullanılan alet ve ekipmanlar, uygulanan teknoloji ve yöntem,
- Depolama, saklama, pazarlama koşulları.

Gıdaların niceliğe ve niteliklerine etkisi olduğu doğrultusunda saptanması, yasa, gıda kodeksi ve sözleşmelerde belirtilen tolerans değerlerine uygun olup olmadığını belirlemesi ve işletmenin verimli ve ekonomik üretim yapabilmek için yapılan çalışmaların tümüne gıda kalite kontrol denir.

Kısaca gıda kalite kontrolü, ülkede nitelikli gıda üretilmesini ve tüketilmesini sağlayan, gıda kalitesinin tanımlamasını, oluşturulmasını ve geliştirmesini amaçlayan sistemdir.

1.1.1. Günümüzde Gıda Kontrolünün Daha Fazla Önem Kazanmasının Nedenleri

- Kapalı ekonomi yerine pazar ekonomisine geçilmesi, iç ve dış piyasa rekabeti,
- Kadınların iş hayatında daha fazla yer alması,
- Sosyal standartlar ve yaşam koşullarının değişmesi,
- Tüketicinin bilişlenmesi, sağlığına ve ekonomik çıkarlarına zararlı olabilecek gıdaları tüketme konusunda duyarılılık göstermesi,
- Teknolojik gelişmelerin gıda endüstrisini olumlu yönde etkilemesi,
- Gıdaların büyük miktarlarda üretimi yani kitle üretim yapılması,
- Yetiştirme, işleme, depolama süreçlerinde, gıda işleveyi kolaylaştırmak, gıda kalitesini yükseltmek, gıdanın dayanıklılığını ve çeşitliliğini artırmak için kullanılan katkı maddelerinin sayısının artması,
- Devletin tüketiciyi korumak, haksız rekabeti önlemek için yasalar düzenlemesi,
- Ulusal ve uluslararası gıda mevzuatının ağırlık kazanmasıdır.
1.1.2. Gıda Endüstrisinde Kalite Kontrolün Nedenleri

- Üretici firma piyasada iyi bir isim yapabilmek için iyi kalitede ürün elde etmek istediğinden ürettiği ürünü çeşitli aşamalarda kontrol eder.
- Üretici aldığı ham maddeyi ve pazarladığı ürünü kontrol ederek hem ekonomik ve verimli bir çalışma ortamına kavuşur hem de yeni yatırımlara yönelir.
- İşletme için gerekli teknik güven, iş disiplini ve çalışanların kontrolü de kalite kontrolünün sürekliliği ile yakından ilişkilidir.
- Her ülkede ve uluslararası ticarette gıda standartları ve tüzükleri vardır. Gıdaların yapısı, katkı maddeleri ve mikrobiyolojik açıdan bu standart ve tüzüklere uygunlukları, sağlığa zararlı olup olmadıkları kalite kontrolle belirlenebilir.
- Gıda maddeleri ticareti özel şartnamelere göre yapılır. Alıcının istediği koşulları sağlamak, anlaşmazlıkları önlemek için kalite kontrolü gereklidir.
- Gıda ticareti yapanlar ve tüketiciler, her zaman aynı kalitede ürün almak isterler.
- Gıdaların besleme nitelikleri de kalite kontrolle belirlenebilir.

1.1.3. Gıda Kalite Kontrolünün Gerekliliği ve Kapsamı

Gıda kalite kontrolü;

- **Gıdalar açısından;**
 - Gıdanın olgunluğu ve işleme özelliğinin belirlenmesi,
 - Gıdanın bozulmuş olup olmadığını saptanması,
 - Gıdada toksik maddeler bulunup bulunmadığının saptanması,
 - Gıdaların hile, taklit, tağşiş yapılmadığının saptanması,
 - Gıdaların katkı maddelerinin çeşit ve miktarlarının saptanması,
 - Gıdaların mikroorganizmaların cins ve sayılarının belirlenmesi,
 - Gıda etiketinde yanlış ve sahte bildirim olup olmadığını saptanması için gereklidir.

- **Toplum açısından;**
 - Toplum sağlığı korumak,
 - Tüketicinin aldatılmasını önlemek,
 - Gıda endüstrisinin gelişmesini sağlamak ve bu alanda haksız rekabeti önlemek,
 - Uluslararası pazarda yer almak, pazar payını büyütmek,
 - Gıda üretimini en verimli şekilde yapmak için gereklidir.

- **Gıda kalite üretim kapsamı;**
 - Gıdaların yapısı,
 - Üretimin çeşitli aşamalarında gıdada olan değişimler,
 - Gıdanın bulunduğu ortamla etkileşimi,
 - Gıda üretim teknolojileri,
 - Üretim öncesinde, üretim sırasında ve üretim sonrasındaki incelemeler,
 - Ölçme ve test etme yöntemleri girer.
1.1.4. Gıdalarda Kalite Kontrolün Sınıflandırılması

- Yapılış amaçlarına göre kalite kontrol
 - Hijyenik kalite kontrol
 - Teknolojik kalite kontrol
 - Nutrisyonel kalite kontrol

- Yapılış zamannına göre kalite kontrol
 - Üretim öncesi kalite kontrol
 - Kalite planlama aşamasında
 - Üretim için gerekli ham madde ve ekipmanların sağlanması aşamasında
 - Üretim sürecinde kalite kontrol
 - Üretim sürecinde
 - Paketleme aşamasında
 - Üretim sonrası kalite kontrol
 - Depolama aşamasında
 - Pazarlama aşamasında

Gıdalarda kontrol daha çok üretim aşamalarında yapılmalıdır. Son üründe yapılacak kontroller yarar sağlamaz, çünkü geriye dönüp kaliteyi düzeltme olanağı yoktur.

1.2. Kalite

ISO’ya göre kalite, bir mal veya hizmetin ondan beklenen belirli ihtiyaçların karşılanma niteliklerini saptamak üzere tüm karakteristiklerini ve işleyiş (performans) özelliklerini kapsayan terimdir.

Kalite üç açıdan incelenebilir:

- Subjektif (öznel) kalite: Tüketicilerin aradığı yararlılık derecesi, pratiklik, fiyat, firmanın güvenirliliği gibi özellikleri kapsar.
- Objektif (nesnel) kalite: Ürünün ölçülebilen ve çoğu kez kalite standartları ve yönetmeliklerle belirlenen özellikleridir.
- optimum kalite: Bir ürünün tüketicilerin istek potansiyeline uygunluk derecesidir ve tüketicilerin istekleri ile ürünün özellikleri arasında en iyi uyuşmayı sağlayan kalitedir.
1.2.1. Kalite Kontrol ve Toplam Kalite Kontrolü

Kontrol yalnızca üretimde geçerli bir olgu değildir. İşletmenin finans ve maliyet, insan kaynakları (personel), satın alma ve pazarlama, ARGE (Araştırma Geliştirme) gibi diğer bölümlerinde de geçerlidir.

Kalite kontrol yalnızca gelen ham maddeden uygun örneklerin alınması, laboratuvar kontrolleri, sağlam vekusurların ayrılmaya işlemleri gibi üretim bölümünün yaptığı işler değildir. İşletmenin en üst düzeydeki yöneticiden en alt düzeydeki işçiye kadar herkesin belli düzeyde sorumluluk taşıdığı bir işlevdir.

Kalite kontrol ham maddeden başlayıp ürün tasarlama, işleme ve depolama kadar üretimin tüm aşamalarında yapılması gereken işlemleri kapsar. Bu nedenle günümüzde toplam kalite kontrolü kavramı geçerlilik kazanmıştır.

Toplam kalite kontrolü, bir organizasyonda kalitenin oluşturulması, sürdürülmesi ve geliştirmesi amacıyla yapılan aktivitelerin, tüketici isteklerine doğrultusunda pazarlama, mühendislik, üretim ve servis işlemleri açısından en ekonomik şekilde gerçekleştirilmesini koordine eden etkili bir sistemdir (Feigenbaum).

1.2.2. Kalite Kontrol Bölümünün Sorumlulukları ve İşletmeye Sağladığı Yararlar

Gıda işletmelerinde üretilen gıdanın kalitesinin yükseltilmesi ve korunması için kalite kontrolünün bir plan çerçevesinde yapılması gereklidir. Bunun için de işletmenin büyüklüğine göre kalite kontrol bölümü bulunmalıdır.

Kalite kontrol bölümünün başlica sorumlulukları;
- Ham madde, yardımcı madde ve üretimde kullanılan diğer malzeme ve ekipmanların kontrolü,
- Üretim sürecinin (proses) planlanması,
- Üretimin ve araç gereç verimliliğinin ölçülmesi,
- İşlenmiş ürün, depo ve depolama, taşma kontrolü,
- Üretim işlemleri ve ürün özelliklerinin açık ve anlaşılır şekilde el kitabı olarak hazırlanması,
- Hijyen ve sanitasyon kontrolü,
- İstatistik programlarının hazırlanması ve istatistik işlemleriinin yapılması,
- Yasa ve standartlara uygunluğun sağlanması,
- Üretim atıklarının kontrolü,
- Bütçenin hazırlanım fiyat politikalarının belirlenmesi,
- Personelin kişisel performansının geliştirilmesi.

Kalite kontrol bölümünün işletmeye sağlayacağı yararlar ise;
- Tüketici beğenisinin sağlanmak ve markalaşmak,
- Kalite düzeyini her zaman aynı düzeyde tutarak firmaya güven sağlamak, piyasada rekabet gücünü artırmak,
➢ Bozulmaları engellemek veya bozuk üretim nedeniyle iade edilen ürün miktarını azaltmak,
➢ Maliyeti düşürmek, en aza indirmek,
➢ Çalışanların moralini yüksek tutmak ve kurumsal kimlik kazandırmak olarak sıralanabilir.

1.2.3. Kalite Kontrol Zinciri

Üretim ve kalite kontrol sistemi tüketicileri insteklerine bağlıdır. Tüketiciler, işletmeye ham madde girdisi sağlayanlar, yarı mamul üretenler, dağıtımcılar, toptancılar, satıcılar ve ürünün son tüketicileri olabilir. İşletme ve kalite kontrol bölümünün görevi, yasal sınırlama ve standartlara uymak koşulu ile tüketicileri karşılamaktır.

Kalite kontrol zinciri tüketicileri ile başlar, tüketicileri ile biter.

➢ Kalite kontrol zincirinde aşamalar

Birinci aşama: Tüketicinin herhangi bir kalite ögesi için istek ve beklentilerinin belirlenmesidir.

İkinci aşama: Tüketicisi spesifikasyonlarının belirlenmesini sağlayacak analiz yöntemlerinin bulunması ve uygulanmasıdır.

Üçüncü aşama: Kontrol noktalarının saptanması ve en fazla bilgiyi en düşük maliyetle sağlayabilecek örnek alma programlarının uygulanmasıdır.

Dördüncü aşama: Kontrol noktalarından elde edilen bulguların hemen düzenlenmiş ilgili formlara işlenmesidir.

Beşinci aşama: Sonuçlar olumlu ise kalite zinciri başarıyla tamamlanmıştır.
Kalite kontrol zinciri kısaca tarladan veya bahçeden başlayıp tüketici masasında sonuçlanan olaylar zinciri olarak tanımlanabilir.

1.2.4. Kalitenin Tahmini

Ham maddeden başlayarak işleme sürecinde de uygulanan ölçüm ve testler sayesinde son ürünün kalitesi tahmin edilebilir.

Ham maddenin kontrol edilmesi ile:
- Bu malın üretim için kabul edilip edilmeyeceğine karar verilir.
- Ham maddede sınıflandırmanın gerekli olup olmadığı saptanır.
- Ham maddenin nasıl hazırlanacağı hakkında bilgi edinilir.
- Isıl işlemlerde ve dolumda uygulanacak değerler belirlenerek gıda işlemeye yön verilir.

İşleme sürecinde yapılan kontrollerle de;
- Spesifikasyonlara uygunluk sağlanır.
- Doldurma ve paketleme sırasında değişiklik yapılp yapılmayacağını karar verilir.
- Depolama süresi ve koşulları saptanır.

Sonuç olarak kalite kontrol noktalarından elde edilen bilgilerle belirli bir raf ömrü sahip istenen kalitede son ürün üretilir.

1.3. Kalite Karakteristikleri

Kalite özellikleri üç grupta sınıflandırılır. Bunlar:
- **Kantitatif (niceleyici) özellikler**
- **Duyusal özellikler,**
- **Gizli özelliklerdir.**

1.3.1. Kantitatif Karakteristikler

Gıda ticaretinde önem taşıyan verim, gıda bileşenlerinin oranı (ingredientlerin oranı) net ağırlık, brüt ağırlık ve süzme ağırlık gibi üreticiyi olduğu kadar tüketiciyi de etkileyen özelliklerdir. Kantitatif (niceleyici) özelliklerin saptanması diğer özelliklere göre daha kolaydır. Bu özellikler tartım, ölçme gibi objektif değerlendirilmelerle saptanır.

Verim: Gıda işleyicisi açısından çok önemli bir özelliktir. Verimin düşük olması maliyeti artırdığından tüketiciinitere ödevin olduğu fiyat da yükselebilir. Örneğin enginar işlemede fire oranı yüksek olduğundan verim oranı düşültür.
Gıda bileşenlerinin (ingredientlerin) oranı: Gıdalara katılan ingredientler ve miktarları ambalaj üzerinde belirtilir. Gıda kalite kontrol açısından ingredientlerin özellikleri, saflıkları, kullanım miktarları önemlidir.

Kiymannın yağ oranı, peynirin su miktarı gibi ingredientler tüketiciyi doğrudan ilgilendiren özelliklerdir.

Brüt ağırlık: Gıda maddesi ve ambalajının birlikte ağırlığıdır.

Net ağırlık: Yalnızca ambalaj içindeki gıdanın ağırlığıdır.

Süzme ağırlık: Konservelerde dolgu sıvısı süzüldükten sonra kalan gıda miktarıdır.

Tablo 1.1: Gıdaların kalite özellikleri ve sınıflandırılması
1.3.2. Gizli Karakteristikler

Tüketicinin duyuları ile değerlendirilememeyen fakat sağlık açısından çok önemli olan özelliklerdir. Gizli karakteristikler, gıda güvenliğini oluşturur, gıdanın tüketilebilirliğini veya satılabilirliğini belirler.

Tüketiciden saptanamadığından kontrolü mutlaka yasal kuruluşlarca yapılmalıdır.

- **Besin değeri:** Tüketicinin gıdanın enerji ve besin öğesi değerini yalnızca kendi beslenme bilgileri ile değerlendirebilir.

- **Katkı maddeleri:** Yasal sınırlar içinde belirlenen limitlere uygun olarak kullanılan katkı maddeleri sağlık açısından bir sorun oluşturmadır.

- **Kirlilik:** Haşereler, böcekler, taş, toprak, egzoz gazları vb. bulunmasıdır.

- **Kontaminasyon (bulaşma):** Metabolik bulaşma biçiminde veya ilac kalıntılarıyla olabilir.

 - Metalik bulaşma: Arsenik (As), kadmiyum (Cd), kurşun (Pb), demir (Fe), kalay (Sn), bakır (Cu), civa (Hg), çinko (Zn) gibi sağlıkla zararlı ağır metal tercih edilemezler.
 - Çevreden, İşletme araç gerecinden, Ambalaj maddelerinden bulaşabilir.

- **İlaç kalıntıları:**
 - Bitki zararları ile mücadelede kullanılan tarım ilaçları (pestisit),
 - Böcek öldürücü ilaçlar (insektisit),
 - Hayvan hastalıklarının tedavisinde kullanılan ilaçlar,
 - Bitki ve hayvanlarda büyüme ve gelişmeyi yönlendirmek, verimi artırmak amacıyla kullanılan büyüme düzenleyicilerin (hormonlar) kalıntılarıdır.

Bu kalıntılar kalp hastalıklarına, sakat doğumlara neden olur. Toksik, kanserojen veya mutasyon yapıcı etki gösterir.

1.3.3. Duyusal Karakteristikler

Duyusal özellikler, insan duyuları tarafından belirlenen tüketicinin bir gıdayı kabul veya reddetmesine yol açan özelliklerdir. **Günlük hayatta son tüketicinin gıda kalitesi genellikle duysal kalitedir.** Tüketicinin kendi duyuları ile değerlendirdiğinde duysal özellikler için gizli özelliklerde olduğu gibi tüketiciyi korumak amacıyla çok sıkı bir yasal kontrolün yapılması gerekmektedir. Duyusal özellikler, tüketiciler için olduğu kadar gıda üreticileri için de önemlidir.
Duyusal özellikle şu şekilde sınıflandırılabilir:

- **Görünüş özellikleri:** Tüketiciden ilk algılanan özelliklerdir. Gıdanın içeriği, besleme değeri hakkında hiçbir bilgi sahibi olmaksızın tüketicinin karar vermesini etkiler. Görünüş özellikleri, tüketicilerin o gıdayı kabul veya reddetmesinde önemli özelliklerdir.

- **Yapısal (kinestetik) özellikler:** Bir maddeye yer çekiminden daha büyük kuvvet uygulandığında maddede oluşan deformasyon ya da ağız veya elle dokunma duyusu ile algılanan özelliklerdir. Doku (tekstür)olarak da ifade edilir.

- **Aroma:** Tat ve kokunun birlikte oluşturduğu duyudur. Aroma değerlendirilmesinde sıcaklık, soğukluk, sağlık durumu gibi etkenler de rol oynar.

Gıdalarda şekil, irilik, görünüş bozuklukları, kusurlar, kabuk rengi gibi gözle ilk bakışta algılanan özelliklere dış kalite özellikleri denir.

Tat, gevreklik, sertlik, sululuk, aroma maddeleri, iç kusurlar gibi tüketim sırasında algılanan ve ağzada saptanan özelliklere de iç kalite özellikleri denir.

1.3.3.1. Gıdalarda Görünüş Özellikleri

Görünüş özellikleri gıda kalitesinin değerlendirilmesinde ilk aşamadır. Çünkü bir yiyecek ya da içeceği ilk gördüğümüzde önce görünüşünü algılamız. Gıdalardan görünüşleri beğenilme ve kabullenmede çok önemlidir. Çünkü gıdalardan renk, hacim ve miktar, dış yüzeyinin düzgün olup olmayışı, ambalaj biçimi, iç yapının görünüşü vb. özelliklerine göre kişi gıdayı beğenirse tedarık eder ve yer.

Tüketicilerde gıdalardan görünüşü ile ilgili duyusal algılar, satın alırken rafta (raf imajı); tüketme hazırlarken mutfahta (hazırlama imajı); tüketirken tabakta (tabak imajı) oluşur.

Tüketiciden, gıdanın görünüşüne göre rafta, o gıdayı satın alıp almamaya, mutfahta, pişirip pişirmemeye, tabakta ise yiyip yememeye karar verir.

Gıdalarda görünüş özellikleri:

- Optik özellikler (renk, parlaklık, yarı geçirgenlik, homojenlik)
- Fiziksel şekil özellikleri (irilik, şekil, yüzey dokusu, görsel kivam)
- Sunuş şekli (ambalaj, aydınlatma, kontrast=zıtlık)
- Viskozite ve konsistens (aşınkanlık, ağdalık, kivam, koyuluk), kusurlar şeklinde sınıflanır.
Şekil 1.3: Gıdaların görünüş özellikleri ve sınıflandırılması (Hutchings)

➢ Optik özellikleri

Gıdaya gelen ışığın değişimlerinin gıdada oluşturduğu özellikleri dır. Renk, parlaklık, opaklık (yarı geçirgenlik), homojenlik ve görsel lezzet gibi özelliklerdir.

- **Parlaklık**: Gıdaların satın alınmasını olumlu yönde etkileyen ve gıdanın renkini daha cazip yapan özelliktir.
- **Yarı geçirgenlik (opaklık derecesi)**: Bira, jöle, reçel gibi gıdalarda önemli bir özelliktir.
- **Homojenlik (bir örneklik)**: Tüketiciler görünüşü homojen olan gıdaları daha çok tercih eder.
- **Görsel lezzet**: Gıdanın görünüşüne göre o gıdanın beklenen lezzettir. Tüketiciler, sarı renkli jöleden limon tadi, pembe renkli pudingten çilek tadi beklerler.
Fiziksel Şekil Özellikleri

- **İrilik (büyüklük) ve şekil:** Ağırlık, hacim, simetri, eğrilik, uzunluk, genişlik, çap şekli ve boyutları oluşturulan özelliklerdir. İrilik ve şekil;
 - Tüketici beğenisini kazanmak,
 - Gıdanın çekiciliğini artırmak,
 - Özel fiyat uygulamak,
 - Teknolojik işlemeeyi kolaylaştırmak,
 - Standartlara uymak açısından önemli özelliklerdir.

- **Yüzey dokusu:** Kuru fasulyenin yüzey düzgünlüğü, meyvelerin, balıkların yüzey sertliği, et kesitinin pütürsüzlüğü gibi tüketici beğenisini etkileyen özelliklerdir.

- **Görsel kıvam:** Yoğurt, bal, ketçap, salça, püre gibi gıdaların akışkanlık özelliğiidir.

Resim 1.1: Ham (soldaki) ve olgun (sağdaki) elmada irilik ve renk farkı

Resim 1.2: Ham (soldaki) ve olgun (sağdaki) kayısıda irilik ve renk farkı

Resim 1.3: Yuvarlak şekilli meyve ve sebzelerde çap ve irilik ölçümünde kullanılan araç
Suşuş şekli

- **Ürün tanımı:** Raftaki ürünün adı ve fiyatı kolaylıkla ve net olarak okunmalıdır.
- **Ambalaj:** Canlı ve orijinal ambalaj renkleri ürünün çekiciliğini ve satışını artırır. Ambalaj üzerindeki resim ve şekiller belirgin olmalı, etiket tasarımına önem verilmelidir.
- **Aydınlatma:** Gıdaların rengi onu aydınlatmada kullanılan ışığa bağlı olarak değişir. Örneğin, kırmızı ışık domates ve etlerin daha kırmızı ve çekici görünmesini sağlar. Raftaki gıdaların taze görünümünü belirginleştirecek bir aydınlatma sistemi tüketicilerin satın almasını olumlu yönde etkiler. Tabak imajını olumlu etkilemek için restoranlarda öğle ve akşam yemeklerinde aydınlatmada farklı renkler kullanılabılır.
- **Kontrast (zıtlık):** Etin yeşil fon üzerinde olması, domateslerin arasına limon veya yeşil otların konması kırmızılığı belirginleştirir. Masa örtüsü ve tabak arasındaki zıtlık tüketici tercihi olumlu etkiler.

Resim 1.4: Gıdalarda kontrast

1.4. Gıdalarda Renk

Bir gıdanın ilk kalite kontrolü rengine bakılarak yapılır. Eğer renk tüketicide olumlu bir etki bırakmazsa gıdanın tadı, aroması, besin öğeleri miktarı vb. özellikleri ne kadar iyi olursa olsun o gıda olumsuz puan alır.

Tüketiciler, gıdaların belirli renkte olmasını ister. Domates kırmızı, limon sarı, salatalık yeşil, portakal turuncu olarak algılanır.

Meyve ve sebzelerin olgunlaşması ile renk arasında bağıntı vardır. Domatesin yeşilden kırmızıya dönmesi olgunlaşmayı, fasulyeyin yeşilden sarıya dönmesi kartlaşmayı gösterir.

Doku, tat ve kokudaki mikroorganizma veya enzim aktivitesi sonucu oluşan istenmeyen değişiklikler renk değişimi ile birlikte oluşur (kirmızı etin kahverengiye dönüshmesi, çürume, karsma, küflenme gibi.).
1.4.1. Gıdalara Renk Veren Bileşikler

Gıdaların rengi kabuk ve iç dokularında bulunan pigmentlerle ilgilidir. Gıdalarda bulunan önemli pigmentler:

- **Karotenoidler**: Sitoplasmanda kloroplast ve kromoplastlarda bulunan sarı kırmızı renk veren karoten, likopen, ksantofil pigmentleridir.
- **Klorofil**: Sitoplasmanda kloroplastlarda bulunan yeşil renk pigmentleridir
- **Flavonoidler**: Hücre vakuolünde erimiş hâlde bulunan sarımsı renkli antoksantin, kırmızı-mor renkli antosoyanin ve tanenlerdir (kateşinler).
- **Hemoglobin**: Kana kırmızı renk veren metalloprotein yapısında pigmenttir.
- **Miyoglobin**: Kaslara kırmızı renk veren protein yapısında pigmenttir.

1.4.2. Rengin Tanımı

Beyaz ışık gerçekte kırmızı, mavi ve yeşil olmak üzere üç renktir. Başka renklerin karışımından elde edilemeyen bu renklere *birincil renk* denir. Birincil renk dışındaki renkler, birincil renklerin karışımıdır.

Bir cam prizmadan geçirilen beyaz ışık, yedi renge ayrılır. Buna spektral dağılım denir. Spektral dağılımdaki yedi ana renk mor, lacivert, sarı, turuncu, mavi, yeşil ve kırmızıdır.

- Eğer bir madde üzerine düşen ışığı emiyorsa ve hiç yansıtmıyorsa *siyah*.
- Işıktaki bütün renkleri eşit olarak yansıtıyorsa *beyaz*dir.
- Işıktaki bazı renkleri emen bazılarını yansıtan cisimler, yansıttığı ışığın renginde görünür.

1.4.3. Rengin Algılanması

Normal insan gözü 10 milyondan fazla değişik rengi ayırt edebilir. Göz tarafından algılanan renk bir cisimden yansıyan ışığın özelliği ve dalga boyuna göre beynin yorumlamasıdır.
Göze gelen ışık göz merceği yardımcıyla reseptör (alıcı) hücreler bulunan retinaya düşürülür. Retinada çubuk ve koni şeklinde olmak üzere iki tip reseptör vardır.

- Çubuk şeklindeki reseptörler siyah, beyaz ve bu iki rengin tonlarına,
- Konik reseptörler kirmizi, mavi, yesil renklere duyarlıdır ve aldıkları sinyalleri beyne gönderir.
- Beyinde yapılan değerlendirme ile renk saptanır.

1.4.4. Renk Özellikleri

- Açıklık koyuluk:
 - Işığın tümünü geçiren cisimler renksiz (geçirgen, transparan),
 - Işığın emen (absorbe eden) ya da yansıtıcı cisimler ise ise opak olarak adlandırılır.
 - Görünçü ışığın cisim tarafından yansıma ya da emilmesi arasındaki ilişkiye açıklık-koyuluk (aydınlık değeri) denir.

- Renk niteliği: Bazı cisimler belli dalga boyları ışınları absorbe ederken diğerleri yansıtır. Örneğin, yaprak, kırmızı ve mavi ışığı absorbe eder, yeşil ışığı yansıtır ve yaprak yeşil olarak algılanır.

- Doymuşluk (kroma): Belirli bir dalga boyları ışınlarını yansıdırmak miktarıdır. Günlük yaşamda kıpkırmızı, sapsarı gibi ifadelerle rengin doymuşluk özelliğini belirtiriz.

- Parlaklık ve matlık:
 - Işık cisim üzerinden bütün açılardan eşit olarak yansıtılan renksiz (yaygın yansıma) cisim mat (donuk) olarak,
 - Belirli bir açıdan diğer açılara oranla daha kuvvetli yansıtılan renksiz (yönsel yansıma) cisim parlak olarak görünür.

Resim 1.6: Çeşitli yağlı tohumlardan elde edilmiş sıvı yağlar ve farklı renkleri

1.4.5. Gıdalarda Objektif Renk Ölçüm Sistemleri

Renk, parlaklık, doymuşluk vb. özellikleri birbirinden farklı binlerce rengi sözcüklerle belirtme olanağı yoktur. İnsanların renk belirtileri çok zayıf olduğu ve renkleri sayisal değerler hâline ifade edemediği için renkleri tanıyabilmek ve birbiri ile karşılaştırabilmek amacıyla renk ölçüm sistemleri geliştirilmiştir.
Gıda endüstrisinde renk ölçümü;

- Munsell sistemi, Lovibond tindometresi, Hunter kolorimetresi, spektrofotometre gibi araçlarla,
- Pigment tayini ile
- Karşılaştırma ilkesine dayanan renk karşılaştırma çözelti ve renkli cam filtreler, standart renkli plastikler, renk skalaları gibi renk ölçme sistemleri ile
- CIE (Uluslararası Aydınlatma Komisyonu) sistemi gibi sistemlerle yapılır.

1.4.5.1. Munsell Sistemi

Gıda teknolojisinde rutin kontrollerde çok kullanılan pratik ve ekonomik renk ölçüm sistemidir. Bu sistemde renkler renk tonu, renk değeri (açıklık-koyuluk), renk doygunluğu (kroma) olmak üzere rengin üç özelliği ile tanımlanır.

- 1’den 10’a kadar numaralandırılan yatay renk tonu skalası bulunur.
 - Kırmızı (red), sarı (yellow), yeşil (green), mavi (blue) ve mor (purple) olmak üzere beş ana renk tonu (Bu renkler R, Y, G, B, P olarak gösterilir.) vardır.
 - Sarı-kırmızı (yellow-red), yeşil-sarı (green-yellow), mavi-yeşil (blue-green), mor- mavi (purple-blue), kırmızı-pembe (red-pink) olmak üzere beş ara renk tonu vardır. Bu renkler YR, GY, BG, PB, RP olarak gösterilir.

- Renk tonu dairesine dik olarak merkezden geçen renk değeri skalası bulunur. Renk değeri skalası 0’dan 10’a kadar numaralandırılmıştır.
 - 0 değeri siyah
 - 10 değeri beyazdır.

- Renk doygunluğu skalası griden başlar ve dış taraфа doğru genişler.

Munsell renk ölçme sistemi pratikte rengi ölçmek istenen örneği döndürülen üst üste getirilmiş ve 10 eşit parçaya ayrılmış üç veya dört renk diskiyle karşılaştırarak uygulanır.

Munsell renk sistemi renk ağaç olarak da isimlendirilir.

Resim 1.7: Munsell sisteminde renklerin spektral dağılımı
1.4.5.2. Lovibond Tindometresi

Rengi ölçmek istenen örnek tindometre aracının özel bölgesinde bulunan MgCO$_3$'ün beyaz rengi ile karşılaştırılır ve uygun filtreler yardımıyla iki renk eşitlenir. Lovibond tindometresinde kırmızı, mavi, sarı olmak üzere üç temel renk vardır ve sarı ve kırmızı renklerin eşit olması turuncu rengi oluşturur. Renk ölçümü yapılırken,

- Örnek Lovibond tindometre hücrene yerleştirilir.
- Gözetleme projekktöründen bakılarak örnek rengine uygun filtreler, yardımcıyla renkler eşitlenir.
- Renk değerleri okunur.
- En düşük okuma düzeyi olan filtre değeri matlık değeridir. Diğer filtre okumalarından düşülür.
- Nötral filtre kullanıldığında nötral filtre değeri parlaklığı belirtir. Parlaklık değeri diğer iki filtre değerinden düşülmelidir.

Örneğin, bir kayısı marmelatında kırmızı filtre değeri 8, sarı filtre değeri 12, mavi filtre değeri 1 okunmuş olsun. En düşük okuma düzeyi olan mavi filtre değeri matlık değeri olduğundan diğer okumalardan düşülmelidir.

Sarı: 12 − 1 = 11
kırmızı: 8 − 1 = 7
7 kırmızı ve 7 sarı turuncu rengi oluşturur ve hakim renk sarı olduğundan sarı = 11 − 7 = 4 olur.

Bu kayısı marmelatının renk değerlendirilmesi ise

Matlık = 1
Turuncu = 7
Sarı = 4 yani
renk, mat turuncu-sarıdır.

Örneğin, bir mısır yağında kırmızı filtre değeri 5, sarı filtre değeri 13, nötral filtre değeri 3 okunmuş olsun.

5 kırmızı ve 5 sarı turuncu rengi oluşturur ve hakim renk sarı olduğundan sarı = 13 − 5 = 8 olur.
Bu mısır yağında renk değerlendirilmesi

Parlaklık = 3 Turuncu = 5 Sarı = 8 yani
renk, parlak turuncu-sarıdır.

Resim 1.8: Lovibond tindometresi

1.4.5.3. Hunter Kolorimetresi

Spektrofotometrik sisteme göre daha ucuz, basit ve çabuk olan fotoelektrik
kolorimetredir. Hunter kolorimetresinde üç renk değeri vardır:
 ➢ a değeri kırmızı veya yeşilliği,
 ➢ b değeri sarılık veya maviliği,
 ➢ L değeri ise 0 (siyah) ve 100 (beyaz) arasındaki aydınlık derecesini ölçer.

Resim 1.9: Hunter renk sisteminde L, a, b renk boyutları
Şekil 5: Basit bir kolorimetrenin çalışma ilkesi

Resim 1.10: Hunter kolorimetresi (renk tayin cihazı)
1.4.5.4. Spektrofotometre

Bir maddeden yansıyan ışığın dalga boynunu ölçerek o maddenin rengini, konsantrasyonunu, kimyasal bileşimini ve molekül yapısını ortaya çıkaran enstrümanlardır. X, UV, kızıl ötesi ışın, görünür ışık ya da mikrodalga ışınını ile çalışan çeşitli spektrofotometreler geliştirilmiştir. Spektrofotometre beş bölümden oluşur:

- Işık kaynağı
- Tayf oluşturan bir prizma ya da kırınım ağı
- Örnek kabı
- Tayfın ayrıntılarını kaydeden detektörler (algılayıcılar)
- Dalga boynunu ve ışınım şiddetini gösteren gösterge

Şekil 1.6: Basit bir spektrofotometrenin bölümleri

5. Silit (kırlan ışığın geçtiği aralık) 6. Örnek kabı 7. Detektör (algılayıcı)
8. Gösterge

Resim 1.11: UV Vis Spektrofotometre

1.4.5.5. Renk Karşılaştırma Çözeltileri

Daha çok yemeklik yağlarda renk belirlemek amacıyla kullanılır.

- Dikromatörler: Standart tüpler içinde bulunan seyreltik dikromat çözelti koyuluğuna göre numaralanır. Yağ tüpler içindeki çözeltiye karşılaştırılıarak hangisine uygun olduğu saptanır.
- İyot renk sayısı: Rengi sarı-kırmızı arasındaki yağlar için uygundur.
- Gardner renk sayısı: Fe ve Co elementlerinden değişik konsantrasyonlarda hazırlanan standart çözelti dizisi ile karşılaştırıma yapılır.
1.4.5.6. Renkli Cam Filtreler

Renk değeri kırmızı, mavi, sarı ve nötral olarak belirlenen filtrelerden geçen ve cisimden yansıyan ışığın karşılaştırılması esasına dayanır.

1.4.5.7. Standart Renkli Plastikleri ve Diskleri

Daha çok taze meyve ve sebzelerde kullanılır. Standart renk ile meyve, sebze karşılaştırılır ve aynı olan rengin katalog numarası belirlenir.

Resim 1.12: Standart renk diskleri

Resim 1.13: Standart renk plastikleri

1.4.6. Renk Ölçümünde Dikkat Edilecek Noktalar

Renk ölçümleri gıdanın renginin renk standartlarına uyup uymadığının belirlenmesi ve kontrolü için yapılır.

Renk belirledede en önemli noktalar;

- Tüketicinin renk isteği ile belirlenen renk arasında bağıntı olmalıdır.
- Renk tayinleri özellikle ışık kaynağı açısından kontrollü şartlar altında yapılmalıdır.
- Renk tayin yapacak kişi renk körlüğü testinden geçmiş olmalıdır.
- Renk ölçümü için en basit yöntem ve araç seçilmelidir.
Aşağıdaki işlem basamaklarına göre elma suyunda renk ölçüm işlemini yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Spektrofotometreyi çalıştırarak kendini kalibre etmesini bekleyiniz.</td>
<td>➢ Laboratuvar kıyafetlerinizi giyiniz.</td>
</tr>
<tr>
<td>➢ Spektrofotometrenin ekranına ışığın dalga boyunu belirten (\lambda) karşısına elma suyunun renginin ölçüldüğünde kullanılan ışığın dalga boyunu 400 yazınız.</td>
<td>➢ Sabırlı ve dikkatli olunuz.</td>
</tr>
<tr>
<td>➢ Spektrofotometre hücresinin saf su koyup yerine yerleştiriniz.</td>
<td>➢ Her gıda için spektrofotometrede renk ölçümünde kullanılan ışığın dalga boyunun farklı olduğunu unutmayınız.</td>
</tr>
<tr>
<td>➢ Spektrofotometrenin kalibrasyonunu kontrol ediniz.</td>
<td>➢ Dikkatli ve gözlemci olunuz.</td>
</tr>
<tr>
<td>➢ Saf suyun bulunduğu hücreyi alıp başka bir hücreye rengi ölçülecek elma suyundan koyunuz ve yerine yerleştiriniz.</td>
<td>➢ Spektrofotometrenin kalibrasyonu tam ise hücrede saf su olduğunda ekranın ışığın geçirgenlik derecesini belirten rakam %100 olmalıdır.</td>
</tr>
</tbody>
</table>
Spektrofotometre ekranındaki değerler sabitleşene kadar bekleyip ekrandaki % rakamı okuyunuz.

Ekranındaki değerler sabitleşmeden rakamı okumayınız.

Sonucun spesifikasyonlara uyup uymadığını rapor ediniz.

KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendirme ölçeğinde değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçeğleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bilgi sayfalarını dikkatlice çalıştınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Laboratuvar kıyafetlerinizi giydiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Laboratuvar araçlarını kontrol edip hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Yeteri kadar temiz pipetiniz var mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Pipetlere puar taktınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 13 tane Nessler tüpü alıp sporta yerleştirin diiz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Her Nessler tüpüne sırasıyla 0,5–1,0–1,5–2,0–2,5–3,0–3,5–4,0–4,5–5,0–6,0–7,0 ml kloroplatinat stok çözeltisi aktardınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Her Nessler tüpünü temiz bir pipetle 50 ml işaret çizgisine kadar saf su ile tamamladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Tüpleri elleriniz arasında döndürerek stok kloroplatinat çözeltisi ile saf suyun karışmasını sağladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Her Nessler tüpünün üzerine kaç birim olduğunu yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Örnek su berrak mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12. Örnek su berrak değilse santrifüjleyerek bulanıklılığı giderdiniz mi?
13. Son Nessler tüpüne 50 ml rengi ölçülecek su örneğinden koydunuz mu?
14. Örnek suyun bulunduğu Nessler tüpünü sırasıyla hazırladığınız standart sarı renk karşılaştırma çözeltisi serisi ile tek tek karşılaştırınız mı?
15. Karşılaştırma işlemini beyaz zemin üstünde ve yukarıdan bakarak yaptınız mı?
16. Örnek suyun renginin hangi renk birimi olduğunu saptadınız mı?
17. Ölçümünüzü rapor ettiniz mi?
18. İşlem sırasında laboratuvar güvenlik kurallarına uydunuz mu?
19. İşlem sonunda kullandığınız aracı gereci temizlediniz mi?
20. Laboratuvarın son kontrollerini yaptınız mı?
21. Önüğünüzü çıkarıp yerine astınız mı?

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. Meyve ve sebzelerde renk tayininde aşağıdakilerden hangisi kullanılmaz?
 A) Spektrofotometre
 B) Kolorimetre
 C) Tenderometre
 D) Tindometre
 E) Pigment tayini

2. Aşağıdakilerden hangisi gıdalarda kirlilik belirtisi sayılır?
 A) Pestisit ve insektisitler
 B) Hormonlar
 C) Arsenik
 D) Mikotoksinler
 E) Hepsi

3. Aşağıdakilerin hangisi dış kalite özelliklerinden değildir?
 A) Şekil
 B) Sertlik
 C) İrilik
 D) Çekirdek evi kusurları
 E) Kabuk rengi

4. Subjektif kalitenin açıklaması aşağıdakilerden hangisidir?
 A) En yüksek kalitedir.
 B) En uygun kalitedir.
 C) Ürünün ölçülebilen, standartlara uygun kalitesidir.
 D) Tüketicilerin aradığı özellikleri kapsayan kalitedir.
 E) Tüm tüketicileri memnun edebilen kalitedir.

5. Aşağıda verilen gıda kalite özellikleri ve sınıfları eşleştirmelerinden hangisi yanlıştır?
 A) Viskozite ve kılınma → görünüş özelliği
 B) Aroma → duyusal özellik
 C) Sertlik → görünüş özelliği
 D) Pestisitler → gizli özellik
 E) Ambalaj ve sunuş → görünüş özelliği

6. Ambalaj içindeki gıdanın ağırlığını aşağıdakilerden hangisidir?
 A) Ortalama ağırlık
 B) Net ağırlık
 C) Görünür ağırlık
 D) Brüt ağırlık
 E) Normal ağırlık
7. Aşağıdakilerden hangisi objektif kaliteyi tanımlamaktadır?
 A) Ürünün ölçülebilen özellikleridir.
 B) Ürünün fiyatı ile ilgili bilgileridir.
 C) Tüketicinin ürün ile ilgili görüşleridir.
 D) Ürünün markasidir.
 E) Ürünün yararlılık derecesidir.

8. Aşağıdakilerden hangisi duyusal karakteristiklerin özelliklerinden değildir?
 A) İnsan duyuları tarafından belirlenir.
 B) Tüketicinin bir gıdayı kabul etmesine yol açar.
 C) Tüketicinin bir gıdayı reddetmesine yol açar.
 D) Son tüketici için gıda kalitesidir.
 E) Besin öğeleri miktarı hakkında fikir verir.

9. Aşağıdakilerden hangisi “işletme kalite kontrol bölümü”nün görevidir?
 A) Standartlara uymak
 B) Yasal sınırlara uymak
 C) Tüketicisi isteklerini karşılamak
 D) Tüketicisi isteklerini göz önünde bulundurmak
 E) Hepsı

10. Aşağıdakilerden hangisi renk ölçümünde dikkat edilecek noktalardan biri değildir?
 A) Renk tayini yapacak kişi dereceli gözlük kullanmamalıdır.
 B) Tüketicinin renk isteği göz önüne alınmalıdır.
 C) Işık kaynağı kontrollü şartlarda olmalıdır.
 D) Renk tayini yapacak kişide renk körlüğü olmamalıdır.
 E) En basit yöntem ve araç seçilmelidir.

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–2

AMAÇ

Bu öğrenme faaliyeti sonunda gerekli bilgileri alacak, uygun ortam, sağlandığında analiz yöntemine uygun olarak gıdalarda doku kontrolü yapabileceksiniz.

ARAŞTIRMA

- Çevrenizdeki gıda işletmelerinin ham maddede hangi dokusal özellikleri aradıklarını ve nedenlerini inceleyiniz.
- Çevrenizdeki gıda işletmelerine giderek hem ham maddede hem de ürünlerinde doku ve kıvam kontrolünü nasıl yaptıklarını gözlemleyip araştırınız.
- Çevrenizde araştırma laboratuvarları varsa gıdalarda doku ölçümünde kullanılan objektif yöntemleri ve kullanılan enstrümanları araştırınız.
- Gıda almında yapı ve kıvam konusunda aranan özellikleri saptamak için çevrenizde mini bir anket düzenleyiniz.
- İnceleme, araştırma ve anket sonuçlarını rapor hâline getirip sınıfta sununuz.

2. GİDALARDA KİNESTETİK ÖZELLİKLER

Gıda endüstrisinde ürünün yapısı ve yapının işlemeden etkilenme derecesi çok önemlidir. Ham maddenin yapısı dayanıklı olmalı, işleme sonrası daがらmalıdır.

Doku gıdalardan hücre, lif ve yapılarının birleşmişindeki düzendir. Dokuyu oluştururan en önemli bileşikler, bitkilerde selüloz, hemiselüloz pektin, lignin ve dolaylı olarak nişastadır (Nişastalı sebzeler genellikle lifli ve odunsuz olmaz.).

Tekstür, viskozite ve kıvama reolojik özellikler denir.
2.1. Kinestetik Duyusal Özellikleri Sınıflandırma

Kinestetik duyan çeşitlerinden bahsedilen duyusal özelliklere, aşağıdaki gibi sınıflandırılabilmektedir.

2.1.1. Parmak Hissi Dokusal Özellikleri

- **Sertlik (katılık):** Parmaklarla fiziksel bir sıkıştırma yapılarak anlaşılabilir. Sertlik, özellikle el malarda aranan bir özellik. Magnes-Taylor basınç test aleti kullanılarak fiziksel olarak basınç ile ölçülebilir.
- **Yumuşaklık:** Şeftali, erik, kayısı gibi meyvelerde aranan bir özellik. Meyve suyu randımanı hakkında bilgi verir. Sertlik gibi basınç uygulanarak ölçülür.
- **Sululuk:** Gıdanın üzerine tırnakla bir deliğin açılması ve suyun sızmasi ile anlaşılır. Penetrometre, sukkorometre gibi araçlarla veya nem tayinleri ile saptanır.

2.1.2. Ağız Hissi Dokusal Özellikleri

- **Çiğnenebilirlik:** Dişlerin sıkıştırma ve bolum hareketlerine karşı gösterdiği dirençtir. Tenderometre, tekstürometre gibi araçlarla, özgülgü ağırlık ve kuru madde tayinleri ile saptanır.

 - Tenderometre değeri ile alkolde çözünen nişasta, selüloz, lif, protein ve pektin gibi maddelerin miktarı arasında sıkı bir ilişki vardır. Örneğin konservelik bezelyelerde erime süresi %13,5 kadar alkolde erimeyecek şekilde içervir ve tendoremetre değeri 120’dir. Hızlı dondurulacak bezelyeler için tendoremetre değerinin 100 olması uygundur.

 - Gıdaların özgülgü ağırlığı (yoğunluk) tekstile özellikler ile ilişkilidir. Tekstile oluşturulan maddelerin özgülgü ağırlığı etkiler. Örneğin, armut ve bezelyeler %13,6’lık salamurada yuzdurluklarla, armut ve hafif olanlar ayrılabilir.

- **Liflilik:** Çiğnemeden sonra ağızdaki parçacıkların kalınıntı ve parçacıkların varlığı ve bunların dişlerin bölmeye kuvvetine gösterdiği direncin. Fibrometre aleti ve ham selüloz tayini ile belirlenir.

- **Kumluluk (tanellilik, püürlülük):** Çiğneme sırasında kum veya sert parçacıkların hissedildiğini. Çilek, mantar ve ispanaka kum parçacıkları, içirde çekirdeğin parçacıkları, armut ve ayva taşlanmış hücrelerde kumluğun belirlenmesi.

- **Unuluk:** Nişasta ve polisakkarit sapı казık vb. sıvısal özellikli maddelerin ağıza bırakığı duyudur. Nişasta, pektin, zamklı madde tayinleri ile saptanır.

- **Yapışkanlık:** Yapışkan, zamkısı, sıvısakız (adhesif) özellikli gıdaların çiğnemesi sırasında ağıza algılayan duyudur. İç yapı oluşturan zamkısakız molekülleri arasındaki çekim kuvvetinden doğar. Meyve ve sebzelerin kırlanmış, kopabilme özelliği, sakizimiz çiğneme özgülate yapışkanlığı belirler. Jelleşme gücü, pektin ve zamklı madde tayinleri ile saptanır.

- **Yağlılık:** Yağlı ve sabunsuz maddeleri içeren gıdaların ağıza bırakığı duyudur. Yağ ve saponin tayinleri ile saptanır.
Tekstürel özellik | Fiziksel test | Alet ve yöntem
--- | --- | ---
Katılık (sertlik) | Basınç | Magnes-Taylor basınç test aleti, Bölmе kuvveti-basinç
Sululuk | Basınç | Delme test aleti, sukorometre, nem oranı tayini
Çiğnenebilirlik | Bölme kuvveti-basinç | Tenderometre, tekstürometre, özgül ağırlık tayini ve kuru madde tayini
Lifliklik | Kesme, ezme | Fibrometre, basınç-bölme test aleti, lif tayini
Kumluluk | – | Ezme, elüsyon=çöktürme
Unluluk | – | Nişasta tayini, zamklı madde tayini
Yapışkanlık | Kopma direnci | Jelleşme gücü, pektin ve zamklı madde tayini

Tablo 2.1: Gıdalarda başlıca dokusal özellikler ve ölçümlerinde kullanılan testler

Kinestetik özellikler, mekanik ve geometrik dokusal özellikler olarak da sınıflanabilmektedir.

2.1.3. Mekanik Dokusal Özellikleri

Gıdaya kuvvet uygulandığında oluşan kırılabilirlik, sertlik, çiğnenebilirlik gibi yapısal özelliklerdir. Mekanik dokusal özellikler, gıdanın dış etkenlere karşı gösterdiği dayanıklılık olan mekanik direnci sağlar. **Mekanik direnç**, bazı meyve ve sebzelerde hasat kriteridir.

Hasat sonrası dayanıklılıkta önemlidir. Pazarlama işlemlerinde ürünü fiziksel zararlardan korur.

![Kavun](image1)

![Şişmiş pirinç](image2)

![Ananas](image3)

![Kahvaltılık](image4)
Yaş meyve ve sebzelerde dokunun mekanik direnci, tür ve çeşite, olgunluğa, yetiştirildikleri çevre koşullarına, gübreleme, sulama gibi bakım koşullarına bağlıdır.

Gıdalara direnç veren özellikler, kabuk özellikleri, hücre özellikleri, hücre iriliği, hücre tipi, hücreler arası bağlantların güçü, hücrenin turgor durumu, gıdanın bileşimidir.

- **Kabuk özellikleri**: Kalın ve kuvvetli kabuğu olan ürünlerin mekanik direnci fazladır. Kabuğun ince ve zayıf olması mekanik zararlanmalara neden olur.

- **Hücre iriliği**: Hücreler büyük, hücreler arası boşluklar fazla ise doku süngerimsi bir hâl alır ve dayanıksız olur. Küçük ve hücreler arası boşlukları dar

- **Hücre tipi:** Destek dokuyu oluşturan kolenkima (pek doku) ve sklerankima (sert doku) hücreleri direnci artırır.
- **Hücreler arası bağlantıların gücü:** Hücre zarları arasında bağlantı yapan pektik maddeler suda eriyip ayrıldığında direnç azalır.
- **Hücrenin turgor durumu:** Osmotik basancı yüksek hücrelerde su alımı ve hücre duvarına yapılan basınç arttığında mekanik direnç de artar.
- **Gıdanın bileşimi:** Nişasta, Ca-pektat, selülöz, hemiselülöz, lignin ve kül miktarı artışta gıdanın direnci de artar.

2.1.4. Geometrik Dokusal Özellikleri

Gıdanın fiziksel yapısının düzenlenmesi ile ilgili kumluluk, liflilik, unluluk gibi dokusal özellikleri kapsar.

<table>
<thead>
<tr>
<th>Parça büyüklüğü ve şekil line ilişkin özellikler</th>
<th>Referans gıdalar</th>
<th>Şekil ve doku düzenlenmesine ilişkin özellikler</th>
<th>Referans gıdalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tozlu</td>
<td>Pudra şeker</td>
<td>Lifi</td>
<td>Tavukgöğsü</td>
</tr>
<tr>
<td>Tebeşirli</td>
<td>Çiğ patates, diş tozu</td>
<td>Posalı</td>
<td>Portakal</td>
</tr>
<tr>
<td>Kumlu</td>
<td>Mısır unu</td>
<td>Şişkin</td>
<td>Şişmiş pirinç</td>
</tr>
<tr>
<td>Kaba kumlu</td>
<td>Armut</td>
<td>Kristalli</td>
<td>Toz şeker</td>
</tr>
<tr>
<td>Kaba</td>
<td>Pişirilmiş yulaf ezmesi</td>
<td>Havalandırılmış</td>
<td>Çalkalanmış süt</td>
</tr>
</tbody>
</table>

Tablo 2.2: Gıdalarda başlıca geometrik dokusal özellikler ve ölçümlerinde kullanılan referans gıdalar

2.2. Gıdalarda Dokunun Subjektif Olarak Ölçülmesi

Dokusal özelliklerin subjektif (duyusal) olarak değerlendirilmesi eğitilmiş uzman panelistlerce gıdaların mekanik ve geometrik dokusal özellikleri, viskoziteleri, yağlılık ve nemlilikleri açısından değerlendirildikleri dokuprofil analizleri ile yapılmaktadır.

Doku profil analizleri, gıdanın ilk ağa alınıp ısırılmasından çığnenip yutulmasına kadar geçen aşamalardaki değişimlerin değerlendirildiği duyusal test tekniğidir.
Şekil 2.1: Doku profil analizleri (amerine ve ark.)

2.3. Gıdalarda Dokunun Objektif Olarak Ölçülmesi

Kinestetik özelliklerin ölçümü için bazı ilkelere dayanan alet ve yöntemler geliştirilmiştir.

Genel ilke, gıdaya uygulanan herhangi bir kuvvete karşı gösterilen direncin ölçümesidir. Dokusal özelliklerin ölçümünde kullanılan enstrümanlarda çubuk, biçak, tel, ağırlık, elektrik motoru gibi araçlarla kuvvet uygulaması yapılır ve uygulanan kuvvete karşı gösterilen direnç ise kalibre edilmiş yaylar, skalalar, hidrolik ölçümler ve dinamometreleden ölçülür.
2.3.1. Gıdalarda Dokunun Objektif Olarak Ölçülmesinde Kullanılan Kuvvetler

- **Basınç:** Uygulanan kuvvetle materyal parçalanmaz fakat sıkıştırılarak hacmi küçültür.

- **Bölme kuvveti:** Materyali iki veya daha fazla parça ayıracak ve parçalardan biri diğerlerinin arasında kayacak şekilde basınç kuvveti uygulanır.

- **Kesme:** Materyali iki parça ayıracak ve parçaların ilk pozisyonları değişmeyecek şekilde basınç kuvveti uygulanır.

- **Kopma direnci:** Materyal birbirine zıt yönde iki taraftan çekilerek germe kuvveti uygulanır, koparılır.

- **Bölme kuvveti–basınç:** Basınç ve bölme kuvveti aynı anda materyal üzerine uygulanarak hem materyal sıkıştırılarak materyalin hacmi küçültülür hem de materyal iki veya daha fazla parça ayırılır ve parçalardan biri diğerlerinin arasında kayar.
Şekil 2.2: Gıdalarda dokunun objektif olarak ölçülmesinde kullanılan kuvvet uygulama tipleri

Günümüzde gıdalarda dokunun objektif olarak ölçülmesi için yukarıda açıklanan kuvvetleri uygulayan **instron** adı verilen çok amaçlı enstrümanlar geliştirilmiştir. **Instron**da delme, kesme, ezme-başınç sıkıştırma, kırma, keserek kaydırma gibi kuvvetleri uygulayan farklı hücrelerle birçok gıda da doku ölçümleri yapılabilmektedir.
Resim 2.2: İnstron hücreleri
2.4. Viskozite ve Konsistens (Kıvam)

Meyve suyu, ketçap, reçel, marmelat, mayonez, yağ, jelatin, jöle, şurup, hamur gibi pek çok kolloid gıda maddesi için önemli bir görünüş özelliğidir. Hem görme hem de dokunma duyuları ile ilgilidir.

Süper akışkanlar hariç tüm gerçek akışkanlar kesme gerilimine karşı direnç gösterir. Kesme gerilimine karşı hiç direnç göstermeyen bir akışkana **ideal akışkan** denir.

Viskozite: Kimyasal olarak saf, fiziksel olarak homojen yapıdaki su, sıvı yağlar, şuruplar, seyreltiğ jelatin çözeltileri gibi Newton tipi çekim kuvvetlerinin egemen olduğu sıvı hâldeki gıdaların kesme gerilimi altında deforme olmaya karşı gösterdiği direnç ölçüsüdür. Akışkanın akmaya karşı gösterdiği direnç olarak tanımlanabilir.
Newton tipi sıvılar, uygulanan çekim kuvvetinin değişmesiyle viskozitesi değişmeyen sıvılarıdır. Örneğin, Newton tipi sıvılarla, bu sıvı içinde dönen bir sondanın hızının artması veya azalması sıvının viskozitesini değiştirmez.

Viskozite, kolloid sıvının bileşimine, kolloid sıvının konsantrasyonuna, ortam sıcaklığına bağlıdır.

<table>
<thead>
<tr>
<th>Örnek</th>
<th>Sıcaklık (ºC)</th>
<th>Viskozite (Cp)</th>
<th>Örnek</th>
<th>Sıcaklık (ºC)</th>
<th>Viskozite (Cp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su</td>
<td>0</td>
<td>1.79</td>
<td>% 20’lik şeker çözeltisi</td>
<td>20</td>
<td>1.92</td>
</tr>
<tr>
<td>Su</td>
<td>50</td>
<td>0.56</td>
<td>% 60’lık şeker çözeltisi</td>
<td>30</td>
<td>6.02</td>
</tr>
<tr>
<td>Su</td>
<td>100</td>
<td>0.28</td>
<td>Süt</td>
<td>20</td>
<td>2.12</td>
</tr>
<tr>
<td>Zeytinyağı</td>
<td>20</td>
<td>84.00</td>
<td>Yağsız süt</td>
<td>25</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Tablo 2.3: Bazı sıvı gıdaların viskozite değerleri

Kısaca, akışkanlık bir sıvının akmaya karşı eğilimini, viskozite ise akmaya karşı gösterdiği direnci ifade eder.

- **Konsistens (kıvam):** Fiziksel olarak heterojen yapıda, Newton tipi olmayan çekim kuvvetlerinin egemen olduğu sıvı veya yarı katı koloid yapılı gıdaların akışkanlığına karşı gösterdikleri dirençtir. Süspansiyon hâlindeki, viskozitesi sabit olmayan ketçap, mayonez, nektar gibi gıdalar Newton tipi olmayan akışkanlar olarak adlandırılır. Gıda endüstrisinde kıvam ölçümleri Newton tipi olmayan ürünler uygulanır. Newton tipi olmayan sıvılar akış tiplerine göre üçe ayrılır:
 - Pseudoplastik sıvılar: Mayonez gibi emülsiyon hâlindedeki gıdalar
 - Plastik sıvılar: Domates ketçabı
 - Dilatant sıvılar: Koyu nişasta süspansiyonlar, sütlü çikolata gibi koyu şekilde doldurulabilen gıdalar

<table>
<thead>
<tr>
<th>Viskozite</th>
<th>Konsistens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton tipi sıvı gıdaların akmaya karşı gösterdiği dirençtir.</td>
<td>Newton tipi olmayan sıvı veya yarı katı koloid yapılı gıdaların akmaya karşı gösterdikleri dirençtir.</td>
</tr>
<tr>
<td>Homojen yapıdaki sıvı gıdaları ölçülen.</td>
<td>Heterojen yapıdaki sıvı ve süspansiyon gıdaları ölçülen.</td>
</tr>
<tr>
<td>Su, sıvı yağlar, şuruplar, seyretik jelatin çözeltilerinde önemli bir yapışsal özelliktir.</td>
<td>Ketçap, mayonez, nektar gibi gıdalar derivatives önemli bir yapışsal özelliktir.</td>
</tr>
</tbody>
</table>

Tablo 2.4: Viskozite ve konsistensin karşılaştırılması

2.4.1. Viskozite ve Konsistensin Belirlenmesinin Yararları

- Ham madde ve son ürünün spesifikasyonlara ve standartlara uygulugunu belirler.
- İşlenmenin çeşitli aşamalarındaki değişiklikler saptanır.
- Ürünün bileşimine girecek teknik yardımcı maddelerin (ingredient) miktarı belirlenir.
İşlemede uygulanacak sıcaklık derecesi ve süresi ayarlanır.
Pektik maddeler, protein, nişasta gibi maddelerin hidroliz derecesi veya polimerizasyon oranı belirlenir.
Polisakkaritlerin kimyasal yapıları ve molekül ağırlıkları saptanır.

2.4.2. Viskozite ve Konsistensin Ölçümü

Viskozite genellikle farklı viskozimetrelerle ve 20°C’de (oda sıcaklığında) ölçülür. Viskozite ve konsistensin objektif ölçümünde belirli kurallara dayalı ölçüm sistemleri geliştirilmiştir.

2. **Materyalin içine girebilme orannına göre ölçüm:** Belirli boyutlardaki sondaların belirli bir yükseklikten bırakıldığında ürünün içine girdiği mesafe ölçülür. Bloom jelemetreşi, penetrometre bu tip araçlara örnek olarak gösterilir. Jelatin, gam (sakız) pektin ve bazı domates ürünlerinin kıvam ölçümlerinde kullanılır.

Resim 2.6: Ostwald viskozimetresi

Resim 2.7: Penetrometre ve farklı sondaları
Resim 2.8: Farklı bir penetrometre

Rotasyonel viskometreler: Test edilen gıdaya batırılan bir sonda veya silindirin dönme hareketine gıdanın gösterdiği direncin ölçülmesi ilkesine dayanır.
2.12: Brookfield viskozimetresi

- **Kuvvetin kaydedilmesi ilkesine dayanılan ölçüm:** Bir karıştırıcının ürün içinde belli sayıda dönmesi için gerekten güç hesaplanır. Farinograf bu tip araçlara örnekdir. Hububat ürünlerinde unun su absorbsiyonunu ve gluten miktarını ölçmek için kullanılır.

2.13: Rotasyonel viskometre

- **Materyalin akış veya yayılımı ilkesine dayanılan ölçüm:** Belirli bir süre içinde (30 sn.) ürünün tek yönde veya tüm yönlere yayılma mesafesi ölçülür. Bostwick konsistometresi, Adams konsistometresi bu tip araçlara örnekttir. Keçap, püre, sos gibi ürünlerini kıvam ölçümlerinde kullanılır.

2.14: Farinograf

2.15: Bostwick konsistometresi

2.5. Lezzet (Aroma)

Tat ve koku kavramlarının bileşimidir. Aromanın kıvam ve doku ile de ilişkisi vardır.
2.5.1. Tat

Dil üzerinde bulunan tat reseptörleri tarafından algılanan, genel olarak tatlı, açı, ekşi ve tuzlu olmak üzere dört boyutlu olarak algılanan duyudur. Gıdalara tat veren bileşikler şunlardır:

- **Ağır tat veren bileşikler:** Fenollü bileşikler, tanenler, kükürtlü bileşiklerdir.
- **Hafif tat veren bileşikler:** Şekerler, organik asitler, alkoller, aldehitler, ketonlar ve esterlerdir.

2.5.1.1. Tat Alma Fizyolojisi

Tat alıcılarının çoğu birden fazla tattan sorumludur, bir kısmı ise daha çok belirli bir tat alma duyununa cevap verir. Fakat hiçbir dört tadın hepsine birden cevap veremez. Dilin;

- Ön kısımlarından tatlı ve tuzlu,
- Yan kısımlarından ekşi,
- Arka kısımlarından açı tat algılanır.

Not: Tatlı ve tuzluunun karışımı olan alkali tat, tuzlu ve ekşinin karışımı olan metalik tat, ara tatlardandır.

![Şekil 2.5: Dilin tat algılama kısımları](image-url)
2.5.1.2. Tat Algısını Etkileyen Faktörler

Tat algısı öncelikle maddenin kimyasal yapısına bağlıdır. Fakat kimyasal yapıları farklı olan maddeler, aynı tadı verebilir veya kimyasal yapıları benzer olan maddeler, farklı tatta olabilir. Örneğin, şeker tatlı duygusu verir. Fakat hiç tadı olmayan şekerler olduğu gibi şeker olmayan sakarin ve kurşun asetat ise tatlıdır.

Tat algısını etkileyen faktörler şunlardır:

- **Tat molekülleri ile temas süresi:** Tat almadan süre de önemli bir faktördür.
- **Konsantrasyon:** Genellikle konsantrasyonu az olan tatlar ağızda alışılmış hakiki tadı bırakmaz. Örneğin, çok az konsantrte tuzlu su ağızda tatlı bir his bırakır. Fakat baharatlar gibi kuvvetli tatlar, düşük konsantrasyonlarda daha çok beğenilir.
- **Sıcaklık:** Tat algısını artırır. Çünkü yüksek sıcaklıkta uçucu maddeler, kolaşarak buharlaşarak koku almayı uyarır.
- **Koku:** Tat almadan önemlidir. Grip gibi hastalıklar durumunda, tat alma hücreleri normal olduğu hâlde koku alma hücreleri normal değildir. Bu durum grip olan kişinin koku almasını azalttığından tat duyusu da azalır.
- **Yaş:** Elli yaştan sonra dört temel tada duyarlılık azalır.
- **Cinsiyet:** Kadınlar tatlı ve tuzlu tatlara daha duyarlıdır.
- **Ağız hıyeni:** Yetersiz olabilir.
- **Sigara içmek:**
- **Ortam:** Herhangi bir bulaşık maddenin varlığı: Herhangi bir tat diğer bir tadın varlığında artabilir veya yok olabilir. Tatlı yedikten sonra şekerli çay, tatsız algılanır.
- **Bazı ilaçların kullanımından**
2.5.1.3. Temel Tat Algıları

<table>
<thead>
<tr>
<th>Tat algısı</th>
<th>Temel bileşik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatlılık</td>
<td>Sakkaroz</td>
</tr>
<tr>
<td>Eksilık</td>
<td>Sitrik asit</td>
</tr>
<tr>
<td>Tuzluluk</td>
<td>Sodyum klorür</td>
</tr>
<tr>
<td>Acılık</td>
<td>Kinin sülfat, kafein</td>
</tr>
</tbody>
</table>

Tablo 2.6: Tat algıları ve tadi değerlendirmede baz alınan temel bileşikler

- **Tatlılık:** Karbonhidratlardan mono ve disakkaritler tatlı bileşiklerdir. Gıdalarda en çok bulunan ve gıda üretiminde kullanılan şekerler ve oransal tatlılıkları şöyledir.

<table>
<thead>
<tr>
<th>Şeker çeşidi</th>
<th>Tatlılık oranı</th>
<th>Şeker çeşidi</th>
<th>Tatlılık oranı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakkaroz</td>
<td>100</td>
<td>α Mannnoz</td>
<td>32</td>
</tr>
<tr>
<td>β Früktoz</td>
<td>180</td>
<td>B Laktoz</td>
<td>32</td>
</tr>
<tr>
<td>β Glikoz</td>
<td>82</td>
<td>β Laktoz</td>
<td>16</td>
</tr>
<tr>
<td>α Glikoz</td>
<td>74</td>
<td>Rafinoz</td>
<td>1</td>
</tr>
</tbody>
</table>

Tablo 2.6: Şekerler ve oransal tatlılıkları

- **Eksilık:** Eksi tattaki bileşikler asit karakterdedir. Gıdalarda tat açısından önemli olan organik asitlerdir. Organik asitlerin eksilık özellikleri moleküllerindeki iyonlaşmayan radikal (kök) kısımlarından ileri gelir. Çünkü radikal kısmın dildeki bazı tat alıcılarını bağlar.

<table>
<thead>
<tr>
<th>Organik asit çeşitleri</th>
<th>Eksilık oranı</th>
<th>Organik asit çeşitleri</th>
<th>Eksilık oranı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitrik asit (süsuz)</td>
<td>100</td>
<td>Glukonik asit (%100’lik)</td>
<td>200 +/- 20</td>
</tr>
<tr>
<td>Sitrik asit (sulu)</td>
<td>109</td>
<td>Fumarik asit</td>
<td>70 +/- 5</td>
</tr>
<tr>
<td>Tartarik asit</td>
<td>85 +/- 5</td>
<td>Laktik asit (%80’lik)</td>
<td>130 +/- 10</td>
</tr>
<tr>
<td>Malik asit</td>
<td>90 +/- 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablo 2.7: Organik asitler ve oransal eksilikleri

- **Tuzluluk:** Tuz, asit ve bazların reaksiyonundan oluşan nötr karakterdeki bileşiklerdir. Tat algısında NaCl temel alır. Tuzların tadi katyon (+ yüklü iyon) ve anyonlarından (- yüklü iyon) ileri gelir. Doğadaki tüm tuzlar aynı derecede tuzlu tada sahip değildir ve alışlan tuz tadını vermez. Küçük molekülü tuzlar tuzlu tada sahipken molekül ağırlığı arttıkça tuzludan acıya değişir.
 - NaCl, KCl, NH₄Cl, LiCl, PbCl₂, NaBr, LiBr, NaI ve Na₂CO₃ tuzlu tettadır.
 - KBr ve NH₄Br tuzlu tada ek olarak acı tettadır.
 - PbI₂, PbBr₂, KI ve Mg²⁺ tuzları acıdır.
 - Be tuzları ise tatlıdır.
Açılık: Uzun zincirli organik moleküllerle, kinin, nikotin, kafein gibi alkaloitlerle oluşur.

2.5.2. Koku

Taze ve çiğ gıdaların doğal bir kokusu vardır. Fakat uzun süre pişirme ve pişirme suyunun dökülmesi kokuların kaybolmasına neden olur. Gıdaların yeme kalitesini artırmak için pişirme sırasında veya gıda endüstrisinde koku verici bazı doğal ve yapay maddeler katılır.

2.5.2.1. Koku Alma Fizyolojisi

2.5.2.2. Koku Algısını Etkileyen Faktörler

- Canlıların koku algılama gücü koku reseptörlerinin rengi ile ilgilidir. Renk koyulaştıkça koku algısı artar (kedi ve köpeklerde).
- Kişilerin koku alma gücü farklıdır. Belirli konsantrasyonlarda verilen koku bir kişi tarafından hissedildiğinde diğeri tarafından hissedilmeyebilir.
- Yaşlandıkça koku alma hissi azalır.
- Kadınlar kokuya karşı daha hassastır.

<table>
<thead>
<tr>
<th>Koku veren kimyasal bileşik</th>
<th>Duyusal tanımlama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metil salisilat</td>
<td>Kekik üzümü, güzel koku</td>
</tr>
<tr>
<td>Amil asetat</td>
<td>Muz yağı</td>
</tr>
<tr>
<td>n-Bütyrik asit</td>
<td>Ter kokusu, ekşi koku</td>
</tr>
<tr>
<td>Benzen</td>
<td>Egzoz kokusu</td>
</tr>
<tr>
<td>Safrol</td>
<td>Sasafras (defnegillerden bir çeşit baharat)</td>
</tr>
<tr>
<td>Etil asetat</td>
<td>Meyvemsi</td>
</tr>
<tr>
<td>Piridin</td>
<td>Yanık</td>
</tr>
<tr>
<td>H₂S</td>
<td>Çürük yumurta</td>
</tr>
<tr>
<td>n-Bütil sülfür</td>
<td>Kötü koku</td>
</tr>
<tr>
<td>Kamarin</td>
<td>Yeni biçimli çimen</td>
</tr>
<tr>
<td>Sitrál</td>
<td>Limon</td>
</tr>
<tr>
<td>Etil merkaptan</td>
<td>Çürük lahana</td>
</tr>
<tr>
<td>Trinitro-tersiyer-bütil ksilen</td>
<td>Misk</td>
</tr>
<tr>
<td>Kâfur veya mentol</td>
<td>Burun ve boğaz için kullanılan ilaç</td>
</tr>
<tr>
<td>Okaliptüs</td>
<td>Burun ve boğaz için kullanılan ilaç</td>
</tr>
<tr>
<td>Etil disülfit</td>
<td>Keçi kokusu</td>
</tr>
<tr>
<td>Vanilya</td>
<td>Dondurma veya puding</td>
</tr>
<tr>
<td>Dietileter</td>
<td>Hastane kokusu</td>
</tr>
<tr>
<td>Asetik asit</td>
<td>Sirke</td>
</tr>
<tr>
<td>Amonyum hidroksit</td>
<td>Amonyak</td>
</tr>
<tr>
<td>Anason</td>
<td>Anason, rakı</td>
</tr>
<tr>
<td>Geraniol</td>
<td>Böcek öldürücü</td>
</tr>
<tr>
<td>Nane yaği</td>
<td>Nane, mint</td>
</tr>
<tr>
<td>Benzaldehit</td>
<td>Acı badem</td>
</tr>
</tbody>
</table>

Tablo 2.8: Gıdalardaki koku veren kimyasal bileşikler ve duyusal tanımları

2.5.2.3. Gıda Endüstrisinde Koku

Tattan daha önemlidir. Çünkü neden olduğu sorunlar büyütür.

- Et, balk, süt gibi proteinli ürünleri işleyen fabrikalarda proteinlerin parçalanması sonucu kötü kokular oluşur.
- Depolama süresi ve sıcaklığı gıdanın kokusunu etkiler.
- Yetersiz ve uygun olmayan ambalajlama koku kaybına veya kötü kokuya neden olabilir.
- Ekmeğin kürlenmesi, yaşın acılaşması, etin kokusu sonucu oluşan kokular kaliteyi düşürür, gıdanın bozulmasına neden olur.
- SO₂, sorbat, benzoik asit gibi koruyucu katkı maddeleri, kullanıldığı gıdanın kokusunu etkiler.
- Peynirde, şarapta kontrollü şartlarda olgunaşma ile gelişen kokular, gıda endüstrisinde koku açısından olumlu örneklerdir.
2.5.3. Gıdalarda Tat ve Kokunun Objektif Olarak Ölçümü

- **Tahliylk**: Kimyasal analizlerde tahliylk ya da tuzluluğun sayısal olarak ifadesi oldukça güçtür. Fakat şeker çözeltilerinde briks oranı ile tat arasında bir ilişki vardır. Suda eriyebilir kuru madde oranı (briks) ve şeker tayinleri ile objektif ölçüm yapılır.

- **Tuzluluk**: Tuz tayinleri ile objektif ölçüm yapılır.

- **Eksilik**: Gıdalarda eksilik, dissosiyeye olmamış asitlerin molar konsantrasyonuna bağlıdır. Eksilik saf çözeltilerde pH ölçüümü ile kompleks karışım olan gıdalarda ise pH yanında dissosiyeye olmuş ve olmamış tüm asitleri kapsayan toplam asitlik tayini ile nesnel olarak belirlenir.

- **Enstrümantal analizlerle aromanın tayini**: Gıdalarda aromayı oluşturan uçucu bileşiklerin identifikasyonunda (tanınma) kızıl ötesi (infrared) ve UV spektrofotometresi kullanılmıştır. Aroma analizlerinde daha çok gaz kromatografisi kullanılmaktadır. Fakat uçucu olmayan tat bileşikleri, tadın daha karmaşık olmasını sağlamışından genellikle duyusal testlerle ölçülür.
Aşağıdaki işlem basamaklarına göre bir ayva marmelatında Bostwick konsistometresi ile kıvam ölçümü yapınız.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Oda sıcaklığında (20ºC), temiz ve kuru Bostwick konsistometresini alınız.</td>
<td>➢ Laboratuvar kıyafetlerinizi giyiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Zamanı iyi kullanınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Soğukkanlı ve sabırlı olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Konsistometrenin temiz, kuru ve oda sıcaklığında olmaması örneğin; kıvamını hatalı ölçmenize neden olacaktır!</td>
</tr>
<tr>
<td>➢ Konsistometrenin arka kısmındaki vidaları çevirerek su terazisini dengeleyiniz.</td>
<td>➢ Su terazisinin indeki su damlacığı tam ortada olduğunda konsistometre yere paralel demektir.</td>
</tr>
<tr>
<td></td>
<td>➢ Konsistometrenin yere paralel olmaması durumunda örneğe uygulanan yer çekimi kuvveti değişeceğinden kıvamı hatalı saptayacağınızı unutmayın.</td>
</tr>
<tr>
<td></td>
<td>➢ Dikkatli ve gözlemci olunuz.</td>
</tr>
</tbody>
</table>
1. Mandalı yukarı doğru çekerek konsistometrenin örnek hücrenin kapısını kapatınız.

2. Konsistometrenin örnek hücrenin kapısını kapatan mandalın yayının bozuk olup olmadığını kontrol ediniz.
4. Dikkatli ve gözlemci olunuz.

5. Viskozitesi ölçülecek ayva marmelatını konsistometrenin örnek hücrene doldurunuz.
6. Önce ayva marmelatının sıcaklık ve briksini ölçünüz.
7. Sıcaklık ve konsantrasyonun akıcılığı etkilediğini unutmayınız.
8. Aynı tip gıda örneklerinde kıvam ölçümüleri aynı briktede ve sıcaklıkta yapılınız.
10. Konsistometrenin örnek hücresinin belli bir hacim dolduracak şekilde düzenlendiğini unutmayınız.

Örnek hücresinin mandalını kuvvetliçe aşağı doğru bastırınız.
<table>
<thead>
<tr>
<th>Ayva marmelatinin 30 bölümlü bir cm genişliğindeki Bostwick konsistometresinde yayılımasını sağlayınız.</th>
</tr>
</thead>
</table>
| Kapağın açıldığı anda kronometreyi çalıştırınız.
Bostwick konsistometresinde kapaktan 1 cm sonra başlayan ve her 0,5 cm’de bir olmak üzere çizgi bulunduğunu biliniz. |

<table>
<thead>
<tr>
<th>Ayva marmelatinin ne kadar hızla yayıldığı gözleyiniz.</th>
</tr>
</thead>
</table>
| 30 sn. sonra kronometreyi kapatınız.
Marmelatin yayıldığı son çizgiyi not ediniz. |

<table>
<thead>
<tr>
<th>Yayılımanın bitimindeki çizgideki rakamı okuyunuz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmelatin yayıldığı mesafeyi konsistometre değerleri ile karşılaştırınız.</td>
</tr>
</tbody>
</table>
UYGULAMA FAALİYETİ

Kapilar viskozimetre ile şeftali nektarında viskozite ölçümü yapınız.

- Kapilar viskozimetre (TS 1596)
- Kronometre
- Saf su
- Termometre
- Baget

- Viskozimetreyi yıkayıp kurutunuz.
- Sıcaklığını 20 ± 0,5°C’ye ayarlayınız.
- İçine hiç hava kabarcığı kalmayacak şekilde saf su doldurunuz.
- Kapilar kısımdan bir miktar saf su aktıktan sonra tüpün ucunu parmağınızla kapatınız.
- Eksilen saf suyu tamamlayınız.
- Hava kabarcığı varsa cam bagetle karıştıramak gideriniz.
- Parmağınızı tüpün ucundan çektiğiniz anda kronometreyi çalıştırınız.
- Saf su kalibrasyon çizgisine ulaşmıştından kronometreyi durdurup süre 0,1 sn. duyarlılıkla kaydederek kapilar viskozimetreyi kalibre ediniz.
- Şeftali nektarının yoğunluğunu bulunuz.
- Viskozim trenin kalibrasyonunda yaptığınız işlemler şeftali nektarı ile en az iki kere daha yapınız ve ortalamayı alınız.

Hesaplama:

\[
\frac{n_1}{n_2} = \frac{d_1 \times t_1}{d_2 \times t_2}
\]

- \(n_1\) = saf suyun viskozitesi (20º C’de 1,005 Cp)
- \(d_1\) = saf suyun yoğunluğu (20º C’de 0,9982 g / cm³)
- \(t_1\) = saf suyun kapilar borudaki akış zamanı (sn.)
- \(n_2\) = şeftali nektarının viskozitesi
- \(d_2\) = şeftali nektarının yoğunluğu (g / cm³)
- \(t_2\) = şeftali nektarının kapilar borudaki akış zamanı (sn.)

Not: Şeftali nektarının kapilar borudaki akış zamanı 30 sn.den az olmamalıdır.
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bilgi sayfalarını dikkatlice çalıştıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Laboratuvar kıyafetlerinizi giydiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Laboratuvar araçlarınızı kontrol edip hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Viskozimetreyi yıkayıp kuruttunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Viskozimetrenin sıcaklığını 20 ± 0,5°C'ye ayarladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Viskozimetreye içine hiç hava kabarcığı kalmayacak şekilde saf su doldurdunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kapılar kısımdan bir miktar saf su akıtmayıp kapatılanı parmağınız ile kapattınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Eksilen saf suyu tamamladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Parmağınızı tüket蜒 ucununandan çektiğiniz anda kronometreyi çaldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Saf su kalibrasyon çizgisine ulaştığında kronometreyi durdurulduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Saf suyunu kapılar borundaki akış süresini 0,1 sn. duyarlılıkla kaydettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Viskozimetre kurutup sıcaklığı 20 ± 0,5°C'ye ayarladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Şeftali nektarinin yoğunluğunu ölçülenizi ölçünüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Viskozimetreye şeftali nektarinin içinde hiç hava kabarcığı kalmayacak şekilde doldurulduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Hava kabarcığı varsa cam bagetle karıştırarak giderdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Kapılar kısımdan bir miktar şeftali nektarını akıttıktan sonra kapılar ucunu parmağınız ile kapatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Eksilen şeftali nektarinin tamamladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Parmağınızı tüketılan ucununandan çektiğiniz anda kronometreyi çaldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Şeftali nektari kalibrasyon çizgisine ulaştığında kronometreyi durdurulduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Şeftali nektarinin kapılar borundaki akış süresini 0,1 sn duyarlılıkla kaydettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Aynı işlemi şeftali nektarı ile en az bir kere daha yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. İki ölçümün ortalamasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Şeftali nektarinin viskozitesini formülden hesapladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Ölçüm sonucunuzu rapor ettiniz mi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
25. İşlem sonunda viskozimetreyi temizlediniz mi?

26. Laboratuvarın son kontrollerini yaptınız mı?

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Aşağıdakilerden hangisi gıdalarda tat değerlendirilmesinde standart bileşiktir?
 A) Glikoz
 B) Laktik asit
 C) Potasyum klorür
 D) Sodyum sülfat
 E) Sakkaroz

 Yukarıdaki organik asitleri en ekşiden en az ekşiye doğru sıralayınız?
 A) 1, 2, 3, 4
 B) 3, 2, 4, 1
 C) 2, 3, 1, 4
 D) 4, 3, 2, 1
 E) 1, 4, 3, 2

3. Aşağıdakilerden hangisi gıdalarda viskozite ölçümünde kullanılmaz?
 A) Viskozimetre
 B) Konsistometre
 C) Tendoremetre
 D) Penetrometre
 E) Jelemetre

4. Kuşkonmaz ve taze fasulye önemli olan olumsuz tekstür özelliği aşağıdakilerden hangisidir?
 A) Sululuk
 B) Sertlik
 C) Çiğnenebilirlik
 D) Liflilik
 E) Kumluluk

 Yukarıdaki kilerden hangisi ya da hangileri gıdalarda kaliteyi düşüren olumsuz kokular oluşturabilir?
 A) Yalnız 1
 B) Yalnız 2
 C) 1 ve 2
 D) 1 ve 3
 E) 1, 2 ve 3
6. Aşağıdakilerden hangisi gıdalara hafif tat veren bileşiklerden biri değildir?
A) Küükürtülü bileşikler
B) Aldehitler ve ketonlar
C) Şekerler
D) Organik asitler
E) Esterler

7. Bostwick konsistometresi ile viskozite ölçümü aşağıdaki ilkelerden hangisine dayanır?
A) Düşme ağırlığı
B) Bir kapilerin ucundan damlatma
C) Materyalin akış veya yayılımı
D) Materyalin içine girebilme oranı
E) Kılcal bir borudan akıtma

8. Aşağıda verilen tat algısını etkileyen faktörlerle ilgili bilgi cümlelerinden hangisi yanlıştır?
A) Sigara içmek tat algısını azaltır.
B) Sıcak gıdaların tadı daha iyi algılanır.
C) Tat molekülleri ile temas süresi arttıkça tat algısı azalır.
D) Ağız hijyenine dikkat etmeyen kişilerin tat duyusu da azalır.
E) Grip gibi hastalıklarda tada duyarlılık azalır.

Gıdalarda ekşilik yukarıdakilerden hangisi ya da hangileri ile objektif olarak ölçülebilir?
A) Yalnız 1
B) Yalnız 4
C) 1 ve 5
D) 2, 3 ve 4
E) 1, 3 ve 5

10. Aşağıdaki bileşiklerden hangisi hayvansal gıdalarda dokuyu oluşturur?
A) Hemiselüloz
B) Mukopolisakkarit
C) Nişasta
D) Pektin
E) Selüloz

11. Aşağıdakilerden hangisi gıdanın içine girebilme oranına göre viskozite ölçümü yapar?
A) Farinograf
B) Ostwald viskozimetresi
C) Saybolt viskozimetresi
D) Penetrometre
E) Rotasyonel viskometre
12. Aşağıda verilen gıdalarda geometrik dokusal özelliklerin ölçümlerinde kullanılan referans gıda eşleştirme承德en hangisi yanlıştır?
A) Kumlu-mişir unu
B) Tozlu- buğday unu
C) Kaba-pişirilmiş yulaf ezmesi
D) Şişkin- şişmiş pirinç
E) Posalı- portakal

DEĞERLENDİRME

Bu öğrenme faaliyeti sonunda gerekli bilgileri alacak, uygun ortam, sağlandığında analiz yöntemine uygun olarak gıdalarda kusur kontrolü yapabileceksiniz.

ARAŞTIRMA

- Çevrenizdeki gıda işletmelerinin ham maddede hangi kusurlar, ne oranda kabul ettiklerini, kusur kontrolünü nasıl yaptıklarını gözlemleyip inceleyiniz.
- Çevrenizdeki gıda işletmelerine giderek ham maddede ve ürünlerinde kusur ölçümünde kullanılan objektif yöntemleri ve kullanılan enstrümanları araştırınız.
- Çevrenizdeki gıda işletmelerinde kusurların hangi yöntemlerle giderildiğini, kusurlu ürünlerin nasıl değerlendirildiğini araştırınız.

3. KUSUR

3.1. Kusur ve Tanımı

Kusur, kaliteli bir ürün için gerekli bazı niteliklerin eksikliği veya kaliteyi olumsuz yönde etkileyen bazı unsurların varlığıdır. İyi kalitede birçok ürün, kusurları yüzünden daha düşük kalite derecelerine girer. Gıdaların alımında kusurların tolerans (hoşgörü, kabul edilebilirlik düzeyi) sınırları içinde olması gerekir.

Tolerans, bir ürünün içinde belirtilen kalite ve boy şunlara girmeyen fakat önlenelemeyen yanlışlıkardan olduğu kabul edilerek hoş görülen madde miktarını veya sayısını belirtir. Tolerans orani % 2–10 arasındadır (ortalama % 5). Tolerans kullanılması gereken bir hak değil, insan ve aletlerin elde olumanan yapabilecekleri hataları hoş görmektir.

Kusursuz bir ürünü bulunması gereken zorunlu özellikleri:

- Ürünün içi dışı sağlam olmalıdır.
- Ürün bütün olmalıdır. Bir kısmı veya parçası kopmuş olmalıdır.
- Ürün temiz olmalıdır. Gözle görülen, görülmeyen kirlar bulunmamalıdır.
- Ürün yabancı tat, koku taşımamalıdır.
- Üründe anormal nem bulunmamalıdır.
- Ürün yeterince gelişmiş ve olgunlaşmış olmalıdır.
- Ürün çeşitine özgü özellikleri taşımalıdır.
3.2. Gıda Kusurlarının Sınıflandırılması

3.2.1. Genetik - Fizyolojik Kusurlar

Ham maddenin kalıtsal anormallikleri sonucu veya ürünün gelişme ve olgunlaşması sırasında olumsuz çevre şartlarının etkisi ile oluşur. Şıcaklık, su, beslenme gibi faktörler veya genetik sapmalar bitki metabolizmasının normal işleyişinde değişiklikler oluşturur (Örneğin, ürünün anormal büyümesi veya küçük kalması, şekilsizliği, renk bozuklukları gibi.).
3.2.2. Entomolojik Kusurlar

Böceklerin ve tarım zararlarının oluşturduğu kusurlar. Bu kusurlar ya böceğin dokuyu delmesi, yumurta bırakması ile ya da hastalığı bitkiye taşımasıyla oluşur (Örneğin, üründe delik ve yaralar, hastalıklı bölgeler, renk bozuklukları, kırılmuş yapraklar gibi.).

3.2.3. Patolojik Kusurlar

Bakteri, maya, küf, virüs gibi mikroorganizmaların oluşturduğu kusurlar. Patolojik kusurlar;
➢ Ürünün görünüş ve yapısını bozar.
➢ Besin değerini düşürür.
➢ Hatta sağlığa zararlı olabilir.

Örneğin, hastalıkli kabuk veya renk bozukluğu, çürük ve mantarsı dokular, lezyon şeklinde sadece yüzeyde görülebildiği gibi iç kısımlarda da olabilir.

Resim 3.2: Patolojik kusurlu meyve ve sebzeler

3.2.4. Mekanik Kusurlar

Çarpma, ezilme parçalanma vb. fiziksel yaralanma sonucu oluşur. Mekanik kusurlar;
➢ Dokuyu zedeler.
➢ Biyokimyasal değişimlere ve enzimatik renk karmalarına neden olur.
➢ Renk ve tat bozukluğu yapar.
➢ Patolojik etkileri kolaylaştırır.
➢ Verimi düşürür.

Ürünün dikkatli taşınması, işlenmesi, uygun ekipman kullanılması mekanik kusurları azaltır.

3.2.5. Ürün Esash Olmayan veya Diğer Yabancı Maddeler

Ürün dışındaki her şeydir. Ürünün yenilebilir kısımlarından olmayan kabuk, kavuz, kökler, yaprak, gelişmemiş tohum, kırık tane gibi zararsız yabancı maddeler; taş, cam, toprak, metal parçaları, böcek vb. atık ve artıkları gibi zararlı yabancı maddeler kusur sayılır.
3.2.6. İç Kusurlar

Ürünün dış görünüşü normal olduğu hâlde iç kısımlarda görülen kusurlardır (Örneğin, patateste içteki siyah lekeler, elmalarda çekirdek evinin sulanması, kek ve ekmeklerin iç kısımlarının hamur olması gibi.).

3.3. Kusurun Ölçümünde Kullanılan Yöntemler

Kusurun ölçümünde kullanılan bazı yöntemler aşağıdaki açıklanmıştır.

3.3.1. Görünürlüğü Geliştirme

Gözle yapılır. Ürün seyreltme, beyaz zeminde inceleme veya farklı renk altında inceleme gibi yöntemler kullanılır.

- **Seyreltme (dilüsyon) tekniği**: Özellikle sıvı ürünler seyreltilmişinde kusurlar kolaylıkla görülebilir (Örneğin, domates salçasında siyah leke sayısının saptanması.).
- **Beyaz zemin kullanma**: Beyaz bir zemine yayılan üründe koyu renkli kısımlar rahatlıkla belirlenir.
- **Farklı renk altında inceleme**: Kusurlar renk değişim tekniği kullanılarak da belirlenebilir. Örneğin, sarı-yeşil elma püresi kırmızı ışıkla aydınlatıldığında kırmızı elma kabuğu kolayca fark edilir.

3.3.2. Kontrol Koşullarını Standardize Etme

Örneğin boyutları, kullanılan örnek kabı, ortamın ışık şiddeti, miktarı ve süre gibi koşullar standardize edilir, farklılık olup olmadığı belirlenir.

3.3.3. Referans Standartlarla Karşılaştırma

Fotograf, grafik veya renkendirilmiş modeller, renk katalogları ile karşılaştırılacak incelemeler yapılır. Örneğin, böcek yaraları, küflerin oluşturduğu patolojik ve genetik kusurlar standart örneklerle karşılaştırılır.

3.3.4. Sayım ve Ölçümle Belirleme

Kusurlu ürünler tek tek sayılacak veya farklı çaptaki çok katlı elek veya disklerden geçirilmiş kusurun miktarı belirlenir. Tolerans sınırlarında olup olmadığı saptanır.
3.4. Kusurlu Gıdanın Giderilmesi

Kusurlu gıdalardaki kusurların giderilmesi için aşağıdaki belirtilen işlemler yapılmalıdır.

3.4.1. Yüzdürme

Hafif olan kusurlu ürünlerin su, yağ veya gaz yağı gibi sıvılarla yüzündürülerek uzaklaştırılması işlemidir. Örneğin, deri, kavuz, kabuk gibi hafif maddeler su ile böcek parçaları gaz yağı ile yabancı ot tohumları yağ ile yüzündürülerek ana üründen uzaklaştırılabilir. Ayrıca %13,6’lık salamurada yüzündulen bezelyelerin ağır ve hafif olanları birbirinden ayrılabilir.

3.4.2. Yıkama (Elüsyon)

Yüzdürmenin tersine ağır olan kusurlu ürünlerin çözütlükler ana üründen ayrılaması işlemidir. Örneğin, kum, çekirdekler, taş parçaları gibi ağır maddeler su veya diğer sıvılara karıştırılıp yıkanır. Bir süre beklenirse ağır maddeler, dibe çökerek ana üründen ayrılır.

3.4.3. Elektronik Ayırma

Ana üründen farklı renkte olan kusurlu ürünlerin ayrılamasında kullanılır. Renk dalga boyu ile ilgili bir özellik olduğundan belirli dalga boyuna duyarlı elektronik gözlerle istenmeyen renkteki kusurlu ürünler, ana üründen uzaklaştırılır. Örneğin, sarı ve yeşil bezelyeler, 500–600 mm dalga boyundaki ışınlara duyarlı elektronik aletlerle ayrılabilirmektedir.
3.4.4. İç Kusurların Giderilmesi

Gıdaların kusurlu kısımlarının optik yoğunluğu sağlam kısımlarından farklıdır. Bu farklılık görünür ışıkla değil ancak X veya γ işillarıyla saptanabilir. İç kusurun bulunduğu ışık frekansı azalır. İç kusurların saptanması radiospect denen iki filtreli araçlarla yapılmaktadır. Eğer üründe iç kusur yoksa iki filtre arasında geçen ışık geçirgenliği aynıdır. Fakat iç kusur bulunduğu ışık geçirgenliği değiştiğinden bu fark radiospect tarafından elektronik olarak algılanır.

Tabl 3.3: Kusurlu gıdanın giderilmesinde kullanılan yöntemler
Aşağıdaki işlem basamaklarına göre dondurulmuş kirazda, kusurlu ürün saptama işlemini yapınız.

Örnekteki kusurlu (çekirdekli, çürük, kurtlu, rengi farklı, saplı) ürünleri sayınız ve 1000 tanedeki kusurlu ürün sayısını saptayınız. Verilen tolerans sınırlarına uyup uymadığını rapor ediniz.

Tolerans sınırları: 1000 adet dondurulmuş kirazda;
- Çekirdekli kiraz sayısı en çok % 2 olmalıdır.
- Çürük ve kurtlu kiraz olmamalıdır.
- Saplı kiraz olmamalıdır.
- Açık renkli, rengi tam gelişmemiş kiraz sayısı en çok % 2 olmalıdır.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ 1 kg=1000 g dondurulmuş kiraz tartınız.</td>
<td>➢ Laboratuvar kıyafetlerinizi giyiniz.</td>
</tr>
<tr>
<td>➢ Tartığınız 1000 g’da kaç kiraz bulunduğunu sayınız.</td>
<td>➢ Tartımı doğru ve dikkatli yapınız.</td>
</tr>
<tr>
<td>➢ Öncelikle sapı kopmamış, rengi tam gelişmemiş kiraz veya açık renkli kiraz olup olmadığını saptayınız. Varsa sayısını not ediniz.</td>
<td>➢ 1000 g dondurulmuş kirazda yaklaşık 250 kiraz bulunmalıdır.</td>
</tr>
<tr>
<td></td>
<td>➢ Tartım bitince teraziyi kapatınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Soğukkanlı ve sabırlı olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Dikkatli ve gözlemci olunuz.</td>
</tr>
<tr>
<td></td>
<td>➢ Zamani iyi kullanınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Kirazları bir biçak yardımı ile yarabilirsiniz.</td>
</tr>
<tr>
<td></td>
<td>➢ Hesaplamanızı doğru yapınız.</td>
</tr>
<tr>
<td></td>
<td>➢ Hatalı sayım ve hesaplamanızın, yanlış sonuç vereceğini unutmayınız.</td>
</tr>
<tr>
<td>➢ Kirazları tek tek yarınız. Çekirdekli, çürük ve kurtlu kiraz olup olmadığını inceleyiniz. Varsa sayısını not ediniz</td>
<td>➢ Dikkatli ve gözlemeçi olunuz</td>
</tr>
<tr>
<td>➢ Oranı yoluyla 1000 tanedeki kusurulu ürün sayısını saptayip verilen tolerans sınırlarına uyup uymadığını rapor ediniz.</td>
<td>➢ Hesaplamanızı doğru yapınız</td>
</tr>
<tr>
<td></td>
<td>➢ Hatalı sayım ve hesaplamanızın, yanlış sonuç vereceğini unutmayınız.</td>
</tr>
</tbody>
</table>
Domates salçasında siyah leke sayısını saptayınız.

- 10 g salça
- Saf su
- Bir 1 cm²lik karelere ayrılmış 20 X 20 cm boyutlarında iki cam plaka
- Genel laboratuvar araç gereçleri
- Kırmızı fayans veya kırmızı karton

- Bir beherde 10 g salça tartınız ve üzerine 20 ml saf su ekleyip spatül ile homojen hâle getiriniz.
- Homojenize edilmiş salcanın 1/3’ünü yani 10 g kadarını 20 X 20 cm boyutlarında cam plakanın tam orta kısmına koyunuz.
- Üzerine 1 cm²lik karelere ayrılmış 20 X 20 cm boyutlarında ikinci cam plakayı çizgileri üst kısmına gelecek şekilde kapatınız ve bastıarak salçayı yaydırınız.
- Salça örneğinin yıldızlığı cam plakayı kırmızı fayans veya karton üzerine koyunuz ve koyu renkli, kahverengi ve siyah tanecikleri iriliklerini de dikkate alarak ayrı ayrı sayıniz.
- Aynı işlemi geri kalan salça ile iki defa tekrarlayınız.
- Sayımlarınızı ortalaması alınız.

- Saydığınız siyah taneciklerin iriliklerine göre aşağıdaki katagorilere uyup uymadığını saptayınız.
 - Küçük benek (0,3 mm’den küçük)
 - Orta benek (0,3–1 mm arası)
 - Büyük benek (1,0 mm’den büyük)
 - Benek sayısı 5–10 adet/10 g’ı geçmemelidir.
KONTROL LİSTEMİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için **Evet**, kazanamadığınız beceriler için **Hayır** kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bilgi sayfalarını dikkatlice çalıştım mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Laboratuvar kıyafetlerinizi giydiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Laboratuvar araçlarınızı kontrol edip hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 20 X 20 cm boyutlarındaki cam plakaldan birini yazar kalem ile 1 cm²lik karelere ayırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Teraziyi çalıştırdı kalibre ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Beherin darasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Beherde 10 g salça tartınım mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Beherdeki 10 g salça üzerine 20 ml saf su ekleyip spatul ile ezerek homojen hale getirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Homojenize edilmiş salçanın 10 g kadarını 20 X 20 cm boyutlarında cam plakanın tam orta kısmına koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Üzerine çizgileri üst kısma gelecek şekilde ikinci cam plakayı kapatıp bastrarak salçayı yaydırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Hazırladığınız cam plakayı kırmızı fayans veya karton üzerine koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. İriliklerini de dikkate alarak iki cam plaka arasındaki salça örneğindeki kahverengi ve siyah tanecikleri saydınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Geri kalan salçadan da 10'ar g alarak aynı işlemi iki kez daha yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Üç sayımın ortalamasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. İriliklerine göre saydığınız siyah taneciklerin size verilen katagorilere uyup uymadığını saptadınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Sayım sonucunuza rapor ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. İşlem sonunda kullandığınız araç gereci temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Laboratuvarın son kontrollerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Havuçta iç kısmın yeşillenmesi aşağıdakilerden hangisine girer?
 A) Patojenik kusur
 B) Fizyolojik kusur
 C) Entomolojik kusur
 D) Mekanik kusur
 E) İç kusur

2. Fizyolojik kusur
 2. Patolojik kusur
 3. Entomolojik kusur
 4. Yabancı madde madde kusuru
 5. İç kusur
 Meyve ve sebzelerde anormal şekiller yukarıdaki kusurlardan hangisi ya da hangilerinin kapsamına girer?
 A) Yalnız 1
 B) Yalnız 5
 C) 1 ve 4
 D) 2 ve 4
 E) 3 ve 4

3. Yabancı tat, koku taşımamak
 2. İçi ve dişi sağlam olmak
 3. Fazla nem taşımak
 4. Temiz olmak
 Yukarıdakilerden hangisi ya da hangileri kusursuz bir üründe bulunması gereken zorunlu özelliklerdendir?
 A) Yalnız 2
 B) Yalnız 3
 C) 1, 2 ve 4
 D) 3 ve 4
 E) 1, 2, 3 ve 4

4. Çilek
 2. Domates
 3. Ispanak
 4. Armut
 5. Şeftali
 Yukarıdakilerden hangisi ya da hangilerinde kumluluk önemli bir tekstür özelliğidir?
 A) Hepsi
 B) 1, 2 ve 3
 C) 2, 3 ve 4
 D) 2, 4 ve 5
 E) 1, 3 ve 4
5. Tohum kabukları aşağıdaki yöntemlerden hangisiyle ayrılabilir?
 A) Elektronik ayırma
 B) Radiospect
 C) Çöktürme
 D) Yıkama
 E) Yüzdürme

6. Aşağıdaki bileşiklerden hangisi gıdalarda kusur ölçümünde kullanılan yöntemlerden biri değildir?
 A) Seyreltme
 B) Beyaz zemin kullanma
 C) Yüzdürme
 D) Sayım ve ölçümle belirleme
 E) Kontrol koşullarını standardize etme

7. Gıdalarda patolojik kusuru aşağıdaki kilerden hangisi oluşturur?
 A) Mikroorganizmalar
 B) Fiziksel yaralanmalar
 C) Genetik sapmalar
 D) Yabancı maddeler
 E) Böcekler

8. Belirtilen kalite ürün içinde daha düşük kaliteden olabilecek ürün miktarına ne denir?
 A) Pazar değeri
 B) Standart ürün
 C) Kalite farkı
 D) Tolerans
 E) II. kalite

DEĞERLENDİRME

Aşağıdaki soruları dikkatlice okuyarak doğru seçeneği işaretleyiniz.

1. Aşağıdaki bileşiklerden hangisi bitkisel gıdalarda dokuyu oluşturan bileşiklerden biri değildir?
 A) Hemiselüloz
 B) Mukopolisakkarit
 C) Nişasta
 D) Pektin
 E) Selüloz

2. Aşağıdakilerden hangisi gıdalara ağır tat veren bileşiklerdir?
 A) Fenollü bileşikler
 B) Aldehitler ve ketonlar
 C) Şekerler
 D) Organik asitler
 E) Esterler

3. Armut ve çilek kalitesinde önemli olan tekstür özelliği aşağıdakilerden hangisidir?
 A) Sululuk
 B) Sertlik
 C) Çiğnenebilirlik
 D) Liflilik
 E) Kumuluş

4. Ostwald viskozimetresi ile viskozite ölçümü aşağıdaki ilkelerden hangisine dayanır?
 A) Düşme ağırlığı
 B) Bir kapilerin ucundan damlatma
 C) Materyalin akış veya yayılımı
 D) Materyalin içine girebilme oranı
 E) Kılcal bir borudan akıtma

5. Kolloit sıvının bileşimi
 2. Kolloit sıvının konsantrasyonu
 3. Kolloit sıvının miktarı
 4. Kolloit sıvının bulunduğu ortam sıcaklığı
 Yukarıdakilerden hangisi ya da hangileri gıdalarda viskoziteyi etkileyen faktörlerden biri değildir?
 A) Yalnız 1
 B) Yalnız 3
 C) 1 ve 4
 D) 1, 2 ve 4
 E) 1, 2 ve 3
6. Ham selüloz tayini ile aşağıdaki hangi tekstür özelliği objektif olarak belirlenir?
 A) Sululuk
 B) Yağlılık
 C) Çiğnenebilirlik
 D) Liflilik
 E) Kumluluk
7. Objektif kalitenin tanımı aşağıdakilerden hangisidir?
 A) En yüksek kalitedir.
 B) En uygun kalitedir.
 C) Ürünün ölçülebilen, standartlara uygun kalitesidir.
 D) Tüketiciğin aradığı özellikleri kapsayan kalitedir.
 E) Tüm tüketici memnuniyet kalitesidir.
8. Ülke tanıtmına katkıda bulunmaktadır
 2. Ekonomik ve verimli gıda üretmek
 3. Gıdanın insan sağlığına zararlı olmamasını sağlamak
 4. Tüketinin alttımsalını önlemek
 Yukarıdakilerden hangisi ya da hangileri gıdalarda kalite kontrolünün amaçlarından değildir?
 A) Yalnız 1
 B) Yalnız 3
 C) 1 ve 2
 D) 2, 3 ve 4
 E) 1, 2, 3 ve 4
9. Gıdanın ambalajı ile birlikte ağırlığı aşağıdaki hangisidir?
 A) Ortalama ağırlık
 B) Net ağırlık
 C) Görünür ağırlık
 D) Brüt ağırlık
 E) Normal ağırlık
10. Gıda kalitesinin tanımlamasını, oluşturulmasını ve geliştirilmesini amaçlayan, ülkede nitelikli gıda üretmesini ve tüketilmesini sağlamak için uygulanan sistem aşağıdaki hangisidir?
 A) Toplam kalite kontrolü
 B) Optimum kalite sistemi
 C) Gıda kalite kontrolü
 D) Gıda güvenirliliği
 E) Kalite yönetimi
11. Domatesin kırmızı renkte olmasının nedenini aşağıdaki kilerden hangisi en iyi açıklar?
 A) Domatesekte likopen pigmenti kırmızı ışınları yansıtır.
 B) Domatesekte likopen pigmenti çift bağlıdır.
 C) Domatesekte likopen pigmenti oksidasyonu uğrar.
 D) Domatesekte likopen pigmenti karotenoid grubu pigmenttir.
 E) Domatesekte likopen pigmenti ışı aşıuyun olarak yansıtır.
12. Kızıl ötesi spektrofotometre
 2. Gaz kromatografisi
 3. Duyusal test
 4. Brikst ve pH tayini
 5. UV spektrofotometresi
Gıdalarında aromayı oluşturan uçucu madde analizlerinde yukarıdaki yöntemlerden hangisi kullanılır?
 A) Yalnız 3
 B) Yalnız 2
 C) 1, 3 ve 4
 D) 1, 2, 3 ve 5
 E) 1, 2, 3, 4 ve 5

13. Aşağıdakilerden hangisi bir kuruluşta kalitenin oluşturulup geliştirilmesi ve müşteri isteklerinin en ekonomik biçimde gerçekleştirilmesi faaliyetleridir?
 A) Kalite yönetim
 B) Kalite sistemi
 C) Toplam kalite kontrolü
 D) Kalite güvencesi
 E) Kalite kontrolü

14. Kayısı ve şeftalide önemli olan tekstür özelliği aşağıdakilerden hangisidir?
 A) Sululuk
 B) Sertlik
 C) Çiğnenebilirlik
 D) Liflilik
 E) Kumluluk

15. 1. Test yöntemleri
 2. Kontrol sonuçlarının rapor edilmesi
 3. Düzeltilici işlem uygulama
 4. Kontrol noktaları
 5. Tüketici istekleri
Kalite çemberinde uygulama aşağıdaki seçeneklerin hangisinde doğru sıralanmıştır?
 A) 1, 2, 3, 4 ve 5
 B) 5, 4, 3, 2 ve 1
 C) 5, 1, 4, 2 ve 3
 D) 5, 3, 2, 1 ve 4
 E) 1, 4, 2, 3 ve 5
16. Mikroorganizmalar
 2. Hormonlar
 3. Pestisitler
 4. Şeker, tuz
 5. Metaller
 6. Enzimler

Yukarıdakilerden hangisi ya da hangileri gıda kirliliğine yol açan faktörlerdendir?
 A) Yalnız 1
 B) 1 ve 2
 C) 2, 4 ve 6
 D) 1, 2, 3 ve 5
 E) 1, 2, 3, 4, 5 ve 6

17. Aşağıdakilerden hangisi dış kalite özelliklerinden değildir?
 A) Kabuk rengi
 B) Görünüş bozuklukları
 C) İrilik
 D) Şekil
 E) Gevreklik

18. Meyve ve sebzelerde mekanik direnci ile ilgili aşağıdakilerden hangisi yanlıştır?
 A) Bileşiminde selüloz, nişasta ve pektik maddeler arttıkça gıdanın direnci zayıflar.
 B) Osmotik basıncı yüksek hücrelerde mekanik direnç artar.
 C) Sklerankima hücreleri direnci artırır.
 D) Küçük ve hücreler arası boşlukları dar dokuların direnci fazladır.
 E) İnce ve zayıf kabuklu ürünlerin direnci de zayıftır.

19. Rengi bozuk kabuk görünüşü gıdalarda hangi kusur kapsamına girer?
 A) Genetik kusur
 B) Entomolojik kusur
 C) Patolojik kusur
 D) Mekanik kusur
 E) İç kusur

20. 1. Şeker tayini
 2. pH tayini
 3. Tuz tayini
 4. Briks
 5. Toplam asitlik

Gıdalarda tatlılık yukarıdakilerden hangisi ya da hangileri ile objektif olarak ölçülebilir?
 A) Yalnız 1
 B) Yalnız 5
 C) 1 ve 4
 D) 1, 3 ve 4
 E) 1, 3 ve 5
21. Aşağıda verilen gıdalarda geometrik dokusal özelliklerin ölçümlerinde kullanılan referans gıda eşleştirmelerinden hangisi yanlıştır?
 A) Tebeşirli-çığ patates
 B) Tozlu- pudra şeker
 C) Havalandırılmış-çalkalanmış süt
 D) Lifli-taze fasulye
 E) Kristalli-toz şeker

22. Lovibond tindometresinde kırmızı filtre değeri 14; sarı filtre değeri 9; mavi filtre değeri 2 okunmuş olan bir kayısı marmelatının renk değerlendirilmesi hangi seçenekte doğru verilmiştir?
 A) Matlık = 0, Turuncu = 9, Sarı = 12
 B) Parлaklık = 1, Turuncu = 7, Kırmızı = 4
 C) Matlık = 2, Turuncu = 7, Kırmızı = 5
 D) Parлaklık = 1, Turuncu = 7, Sarı = 4
 E) Matlık = 2, Kırmızı = 14, Sarı = 9

23. Aşağıdakilerden hangisi gıdalarda kusur ölçümünde kullanılan yöntemlerden biridir?
 A) Görünürlüğü geliştirme
 B) Radiospect
 C) Elektronik ayırma
 D) Yüzdürme
 E) Yıkama

24. 1. Yabancı tat, koku taşımamak
 2. İçi dışı sağlam olmak
 3. Fazla nem taşımak
 4. Yeterince gelişmiş ve olgunlaşmış olmak
 5. Çeşidine özgü özellikleri taşımak
 Yukarıdakilerden hangisi ya da hangileri kusursuz bir üründe bulunması gereken zorunlu özelliklerden biri değildir?
 A) Yalnız 2
 B) Yalnız 3
 C) 1, 2, 4 ve 5
 D) 2, 3, 4 ve 5
 E) 1, 2, 3 ve 4

DEĞERLENDİRME

UYGULAMALI TEST

Bir ketçap örneğinde renk, kivam ve siyah benek kusur ölçümü yapınız.

DEĞERLENDİRME ÖLÇEĞİ

Bu faaliyet kapsamında aşağıdaki listelenen davranışlardan kazandığınız beceriler için Evet, kazanamadığınız beceriler için Hayır kutucuğuna (X) işareti koyarak kendinizi değerlendiriniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renk ölçümü için;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Bilgi sayfalarını dikkatlice çalıştınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Kolorimetrenin fişi, prize takılmış mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kolorimetrenin örnek hücresi temiz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kolorimetrenin hücresine ketçap doldurdunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kolorimetre hücresini yerine yerleştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Projektörden bakarak ayrı ayrı kırmızı, mavi ve yeşil ışıkların yoğunluğunu ölçtiniz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ketçaptan yansıyan ışığın rengini kolorimetredeki kırmızı, mavi ve yeşil ışıkların yoğunlukları ile eşitleyerek skaladan okudunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Ölçüm sonucunuza rapor ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Kolorimetrenin hücresini temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kivam ölçümü için;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Konsistometre temiz, kuru ve oda sıcaklığında mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Konsistometrenin arka kısımdaki vidaları çevirerek su terazisindeki su damlacığını tam ortaya getirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Mandalı yukarı doğru çekerek konsistometrenin örnek hücresinin kapısını kapatınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Ketçabın sıcaklık ve briksini ölçütinüz mü?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Ketçap 20ºC sıcaklığında mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Ketçabın konsistometrenin örnek hücresine silme olarak doldurdunuz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Konsistometrenin örnek hücresinin mandalını kuvvetle aşağı doğru bastırmıp kapak açıldığı anda kronometreyi çalıştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. 30 sn. sonra kronometreyi kapattınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Ketçabın yayıldığı son çizgisi son çizgiyi not ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Ketçabın yayıldığı mesafeyi konsistometre değerleri ile karşılaştırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Ölçüm sonucunuzu rapor ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Konsistometreyi temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kusur ölçümü için</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22. Laboratuvar araçlarını kontrol edip hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. 20 X 20 cm boyutlarındaki cam plakalardan birini yazar kalem ile 1 cm²lik karelere ayırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Teraziyi çalıştırdı kalibre ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Beherin darasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Beherde 10 g ketçap tarttıınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Beherdeki 10 g ketçap üzerine 20 ml saf su ekleyip spatüllile ezerek homojen hâle getirdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Homojenize edilmiş ketçaptan 10 g kardanın 20 X 20 cm boyutlarında cam plakanın tam orta kısmına koydunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Üzerine çizgileri üst kısma gelecek şekilde ikinci cam plakayı kapatıp bastıarak ketçabı yaydırdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Hazırladığınız cam plakayı kırmızı fayans veya karton üzerine koydunuz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. İriliklerini de dikkate alarak iki cam plaka arasındaki ketçap arasında kahverengi ve siyah tanecikleri saydınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Geri kalan ketçaptan da 10’ar g alarak aynı işlemi iki kez daha yaptınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Üç sayımın ortalamasını aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. İriliklerine göre saydığınız siyah taneciklerin size verilen kategorilere uyup uymadığını saptadınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Sayım sonucunuzu rapor ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. İşlem sonunda kullandığınız araç gereçleri temizlediniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. Laboratuwarın son kontrollerini yaptınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖĞRENME FAALİYETİ -1’İN CEVAP ANAHTARI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>E</td>
<td>3</td>
<td>B</td>
<td>4</td>
<td>D</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>7</td>
<td>A</td>
<td>8</td>
<td>E</td>
<td>9</td>
<td>E</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖĞRENME FAALİYETİ -2’NİN CEVAP ANAHTARI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>2</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td>4</td>
<td>D</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>7</td>
<td>C</td>
<td>8</td>
<td>C</td>
<td>9</td>
<td>C</td>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>12</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖĞRENME FAALİYETİ -3’ÜN CEVAP ANAHTARI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td>3</td>
<td>C</td>
<td>4</td>
<td>E</td>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>7</td>
<td>A</td>
<td>8</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MODÜL DEĞERLENDİRMENİN CEVAP ANAHTARI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B</td>
</tr>
<tr>
<td>2.</td>
<td>A</td>
</tr>
<tr>
<td>3.</td>
<td>E</td>
</tr>
<tr>
<td>4.</td>
<td>E</td>
</tr>
<tr>
<td>5.</td>
<td>B</td>
</tr>
<tr>
<td>6.</td>
<td>D</td>
</tr>
<tr>
<td>7.</td>
<td>C</td>
</tr>
<tr>
<td>8.</td>
<td>A</td>
</tr>
<tr>
<td>9.</td>
<td>D</td>
</tr>
<tr>
<td>10.</td>
<td>C</td>
</tr>
<tr>
<td>11.</td>
<td>A</td>
</tr>
<tr>
<td>12.</td>
<td>D</td>
</tr>
<tr>
<td>13.</td>
<td>C</td>
</tr>
<tr>
<td>14.</td>
<td>A</td>
</tr>
<tr>
<td>15.</td>
<td>C</td>
</tr>
<tr>
<td>16.</td>
<td>D</td>
</tr>
<tr>
<td>17.</td>
<td>E</td>
</tr>
<tr>
<td>18.</td>
<td>A</td>
</tr>
<tr>
<td>19.</td>
<td>C</td>
</tr>
<tr>
<td>20.</td>
<td>C</td>
</tr>
<tr>
<td>21.</td>
<td>D</td>
</tr>
<tr>
<td>22.</td>
<td>C</td>
</tr>
<tr>
<td>23.</td>
<td>A</td>
</tr>
<tr>
<td>24.</td>
<td>C</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- GÖNÜL Meral, Tomris Altuğ, Dilek Boyacıoğlu, Ülker Noka, **Gıda Analizleri**, Ege Üniversitesi Mühendislik Fakültesi Yayınları Nu.: 84, İzmir, 1996.